Tailoring the microstructure of La0.6Sr0.4Co0.2Fe0.8O3−α cathode material: the role of dispersing agent

Journal of Sol-Gel Science and Technology - Tập 80 - Trang 259-266 - 2016
Ismariza Ismail1, Nafisah Osman2, Abdul Mutalib Md Jani2
1Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
2Faculty of Applied Sciences, Universiti Teknologi MARA, Arau, Malaysia

Tóm tắt

A lower operating temperature below 600 °C of the solid oxide fuel cells (SOFCs) is a key determinant of device performance. With this in mind, the roles of dispersing agents were investigated for synthesizing a cathode material made of La0.6Sr0.4Co0.2Fe0.8O3−α (LSCF) for application in intermediate temperature solid oxide fuel cells (IT-SOFCs). In the present study, LSCF was synthesized following a sol–gel method with the aid of an activated carbon and ethylene glycol as dispersing agents. X-ray diffractometer measurements indicate that a single perovskite phase of LSCF started to develop at the temperature of 500 °C and completely formed at 700 °C. Scanning electron microscope analysis confirmed that a well dispersed LSCF powders were successfully synthesized achieving a surface area of 12.05 m2 g−1 as corroborated by the BET surface area analysis. This finding shows significant improvements of modifying the structural properties of cathode material and could be used to fabricate the next generation of SOFCs.

Tài liệu tham khảo

Ortiz-Vitoriano N, Bernuy-López C, Ruiz de Larramendi I, Knibbe R, Thydén K, Hauch A, Holtappels P, Rojo T (2013) Appl Energy 104:984–991 Ding Z, Yang Z, Zhao D, Deng X, Ma G (2013) J Alloy Compd 550:204–208 Ricote S, Bonanos N, Rørvik PM, Haavik C (2012) J Power Sources 209:172–179 Peng R, Wu T, Liu W, Liu X, Meng G (2010) J Mater Chem 20:6218–6225 Qiang F, Sun K, Zhang N, Le S, Zhu X, Piao J (2009) J Solid State Electrochem 13:455–467 Wu L, Jiang Z, Wang S, Xia C (2013) Int J Hydrogen Energy 38:2398–2406 Yu H-C, Fung K-Z (2003) Mater Res Bull 38:231–239 Dusastre V, Kilner J (1999) Solid State Ionics 126:163–174 Ghouse M, Al-Yousef Y, Al-Musa A, Al-Otaibi MF (2010) Int J Hydrogen Energy 35:9411–9419 Zhao E, Liu X, Liu L, Huo H, Xiong Y (2014) Prog Nat Sci Mater Int 24:24–30 Hu B, Wang Y, Xia C (2014) J Power Sources 269:180–188 Murata K, Fukui T, Abe H, Naito M, Nogi K (2005) J Power Sources 145:257–261 da Conceição L, Silva AM, Ribeiro NFP, Souza MMVM (2011) Mater Res Bull 46:308–314 Ortiz-Vitoriano N, Ruiz de Larramendi I, Gil de Muro I, Ruiz de Larramendi JI, Rojo T (2010) Mater Res Bull 45:1513–1519 Singhal SC, Kendall K (2003) High-temperature solid oxide fuel cells: fundamentals, design and applications. Elsevier, New York Zhou W, Shao Z, Jin W (2006) J Alloy Compd 426:368–374 Kim JH, Park YM, Kim H (2011) J Power Sources 196:3544–3547 Sun C, Hui R, Roller J (2009) J Solid State Electrochem 14:1125–1144 Letilly M, Joubert O, Le Gal La Salle A (2012) J Power Sources 212:161–168 Garcia LMP, Macedo DA, Souza GL, Motta FV, Paskocimas CA, Nascimento RM (2013) Ceram Int 39:8385–8392 Liu Z, Liu M, Nie L, Liu M (2013) Int J Hydrogen Energy 38:1082–1087 Mazlan NA, Osman N, Jani AMM, Yaakob MH (2015) J Sol–Gel Sci Technol 78:50–59 Wongmaneerung R, Yimnirun R, Ananta S (2009) Mater Chem Phys 114:569–575 Erb T, Zhokhavets U, Gobsch G, Raleva S, Stühn B, Schilinsky P, Waldauf C, Brabec CJ (2005) Adv Funct Mater 15:1193–1196 Chanquía CM, Mogni L, Troiani HE, Caneiro A (2014) J Power Sources 270:457–467 Jin HW, Kim JH, Park YM, Choi C, Kim H-J, Kim H (2012) J Ceram Process Res 13:S286–S290 Itoh T (1985) J Mater Sci Lett 4:431–433 Tao Y, Shao J, Wang J, Wang WG (2008) J Power Sources 185:609–614 Baqué L, Caneiro A, Moreno MS, Serquis A (2008) Electrochem Commun 10:1905–1908 Nambam JS, Philip J (2012) J Colloid Interface Sci 366:88–95