Tailoring the microstructure of La0.6Sr0.4Co0.2Fe0.8O3−α cathode material: the role of dispersing agent
Tóm tắt
A lower operating temperature below 600 °C of the solid oxide fuel cells (SOFCs) is a key determinant of device performance. With this in mind, the roles of dispersing agents were investigated for synthesizing a cathode material made of La0.6Sr0.4Co0.2Fe0.8O3−α (LSCF) for application in intermediate temperature solid oxide fuel cells (IT-SOFCs). In the present study, LSCF was synthesized following a sol–gel method with the aid of an activated carbon and ethylene glycol as dispersing agents. X-ray diffractometer measurements indicate that a single perovskite phase of LSCF started to develop at the temperature of 500 °C and completely formed at 700 °C. Scanning electron microscope analysis confirmed that a well dispersed LSCF powders were successfully synthesized achieving a surface area of 12.05 m2 g−1 as corroborated by the BET surface area analysis. This finding shows significant improvements of modifying the structural properties of cathode material and could be used to fabricate the next generation of SOFCs.
Tài liệu tham khảo
Ortiz-Vitoriano N, Bernuy-López C, Ruiz de Larramendi I, Knibbe R, Thydén K, Hauch A, Holtappels P, Rojo T (2013) Appl Energy 104:984–991
Ding Z, Yang Z, Zhao D, Deng X, Ma G (2013) J Alloy Compd 550:204–208
Ricote S, Bonanos N, Rørvik PM, Haavik C (2012) J Power Sources 209:172–179
Peng R, Wu T, Liu W, Liu X, Meng G (2010) J Mater Chem 20:6218–6225
Qiang F, Sun K, Zhang N, Le S, Zhu X, Piao J (2009) J Solid State Electrochem 13:455–467
Wu L, Jiang Z, Wang S, Xia C (2013) Int J Hydrogen Energy 38:2398–2406
Yu H-C, Fung K-Z (2003) Mater Res Bull 38:231–239
Dusastre V, Kilner J (1999) Solid State Ionics 126:163–174
Ghouse M, Al-Yousef Y, Al-Musa A, Al-Otaibi MF (2010) Int J Hydrogen Energy 35:9411–9419
Zhao E, Liu X, Liu L, Huo H, Xiong Y (2014) Prog Nat Sci Mater Int 24:24–30
Hu B, Wang Y, Xia C (2014) J Power Sources 269:180–188
Murata K, Fukui T, Abe H, Naito M, Nogi K (2005) J Power Sources 145:257–261
da Conceição L, Silva AM, Ribeiro NFP, Souza MMVM (2011) Mater Res Bull 46:308–314
Ortiz-Vitoriano N, Ruiz de Larramendi I, Gil de Muro I, Ruiz de Larramendi JI, Rojo T (2010) Mater Res Bull 45:1513–1519
Singhal SC, Kendall K (2003) High-temperature solid oxide fuel cells: fundamentals, design and applications. Elsevier, New York
Zhou W, Shao Z, Jin W (2006) J Alloy Compd 426:368–374
Kim JH, Park YM, Kim H (2011) J Power Sources 196:3544–3547
Sun C, Hui R, Roller J (2009) J Solid State Electrochem 14:1125–1144
Letilly M, Joubert O, Le Gal La Salle A (2012) J Power Sources 212:161–168
Garcia LMP, Macedo DA, Souza GL, Motta FV, Paskocimas CA, Nascimento RM (2013) Ceram Int 39:8385–8392
Liu Z, Liu M, Nie L, Liu M (2013) Int J Hydrogen Energy 38:1082–1087
Mazlan NA, Osman N, Jani AMM, Yaakob MH (2015) J Sol–Gel Sci Technol 78:50–59
Wongmaneerung R, Yimnirun R, Ananta S (2009) Mater Chem Phys 114:569–575
Erb T, Zhokhavets U, Gobsch G, Raleva S, Stühn B, Schilinsky P, Waldauf C, Brabec CJ (2005) Adv Funct Mater 15:1193–1196
Chanquía CM, Mogni L, Troiani HE, Caneiro A (2014) J Power Sources 270:457–467
Jin HW, Kim JH, Park YM, Choi C, Kim H-J, Kim H (2012) J Ceram Process Res 13:S286–S290
Itoh T (1985) J Mater Sci Lett 4:431–433
Tao Y, Shao J, Wang J, Wang WG (2008) J Power Sources 185:609–614
Baqué L, Caneiro A, Moreno MS, Serquis A (2008) Electrochem Commun 10:1905–1908
Nambam JS, Philip J (2012) J Colloid Interface Sci 366:88–95