Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Định hình các Tính chất Vật lý Hóa học của các Chất xúc tác Tăng cường Mg thông qua Phương Pháp Đồng kết tủa Một Bước Hỗ trợ bởi Chất hoạt động bề mặt Không ion cho quá trình đồng nạp CO2 Syngas thành Methanol
Tóm tắt
Việc chuyển đổi syngas đồng nạp CO2 thành nhiên liệu bền vững và các hóa chất có giá trị là một trong những chiến lược hứa hẹn cho việc giảm thiểu CO2 một phần. Các sửa đổi bề mặt của các chất xúc tác dựa trên CuZn được tăng cường bằng Mg qua phương pháp đồng kết tủa một bước hỗ trợ bởi chất hoạt động bề mặt không ion là một cách tiếp cận hiệu quả để thúc đẩy quá trình hydro hóa CO/CO2 thành methanol. Tại đây, ảnh hưởng của tỉ lệ mol khác nhau của chất hoạt động bề mặt/(CuZnMg) đến các tính chất vật lý hóa học và việc thúc đẩy methanol chọn lọc đã được điều tra một cách có hệ thống. Các chất xúc tác CuZnMg cấu trúc meso (I–III) với các tỉ lệ mol khác nhau (0–0.06) dẫn đến sự khác biệt về diện tích bề mặt riêng, kích thước tinh thể, tương tác giữa các mạng lưới và mật độ các vị trí cơ bản. Đối với chất xúc tác tối ưu CuZnMg (III) (tỉ lệ mol = 0.06), kích thước tinh thể CuO, diện tích bề mặt riêng và mật độ các vị trí cơ bản lần lượt là 7.2 nm, 31.23 m2/g và 14.6 µmol/m2. Hơn nữa, CuZnMg (III) thể hiện các loại CuO phân tán tốt nhất và có tương tác mạnh giữa mạng Cu và ZnO, như đã được phân tích bằng H2-TPR. Do đó, CuZnMg (III) thể hiện tỷ lệ chuyển đổi carbon tổng cộng cao nhất (33.6%) và độ chọn lọc methanol tối đa (72.5%) dưới các điều kiện phản ứng giống nhau (40 bar, 240 °C, 2000 mL/gcat.h). Ảnh hưởng của các thông số quá trình đến tỷ lệ chuyển đổi carbon tổng cộng và độ chọn lọc methanol của chất xúc tác CuZnMg (III) cũng đã được chứng minh. Thú vị là, độ chọn lọc methanol và mật độ các vị trí cơ bản có tương quan tuyến tính với các tỉ lệ mol chất hoạt động bề mặt và cả hai đều được cải thiện lần lượt 30% và 16% cho chất xúc tác CuZnMg (III) so với chất xúc tác truyền thống, nhấn mạnh tiềm năng của chất xúc tác hỗ trợ bởi chất hoạt động bề mặt (CuZnMg (III)) cho các phản ứng hydro hóa CO/CO2.
Từ khóa
Tài liệu tham khảo
Liu X, Wang M, Yin H, Hu J, Cheng K, Kang J, Zhang Q, Wang Y (2020) Tandem catalysis for hydrogenation of CO and CO2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34. ACS Catal 10:8303–8314
Sonal AE, Upadhyayula S, Pant KK (2019) Biomass-derived CO2 rich syngas conversion to higher hydrocarbon via Fischer-Tropsch process over Fe–Co bimetallic catalyst. Int J Hydrog Energy 44:27741–27748
Li MMJ, Tsang SCE (2018) Bimetallic catalysts for green methanol production via CO2 and renewable hydrogen: a mini-review and prospects. Catal Sci Technol 8:3450–3464
Ganesh I (2014) Conversion of carbon dioxide into methanol—a potential liquid fuel: fundamental challenges and opportunities (a review). Renew Sustain Energy Rev 31:221–257
Goeppert A, Czaun M, Jones J-P, Prakash GKS, Olah GA (2014) Recycling of carbon dioxide to methanol and derived products—closing the loop. Chem Soc Rev 43:7995–8048
Li K, Chen JG (2019) CO2 hydrogenation to methanol over ZrO2-containing catalysts: Insights into ZrO2 induced synergy. ACS Catal 9:7840–7861
Zhong J, Yang X, Wu Z, Liang B, Huang Y, Zhang T (2020) State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem Soc Rev 49:1385–1413
Abbas I, Kim H, Shin CH, Yoon S, Jung KD (2019) Differences in bifunctionality of ZnO and ZrO2 in Cu/ZnO/ZrO2/Al2O3 catalysts in hydrogenation of carbon oxides for methanol synthesis. Appl Catal B Environ 258:117971
Gallucci F, Basile A, Drioli E (2007) Methanol as an energy source and/or energy carrier in membrane processes. Sep Purif Rev 36:175–202
Behrens M, Studt F, Kasatkin I, Kühl S, Hävecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep B-L, Tovar M, Fischer RW, Nørskov JK, Schlögl R (2012) The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336:893–898
Studt F, Behrens M, Kunkes EL, Thomas N, Zander S, Tarasov A, Schumann J, Feri E, Varley JB, Adild-Pedersen F, Nørskov JK, Schlögl R (2015) The Mechanism of CO and CO2 hydrogenation to methanol over Cu-based catalysts. ChemCatChem 7:1105–1111
Rodriguez JA, Liu P, Stacchiola DJ, Senanayake SD, White MG, Chen JG (2015) Hydrogenation of CO2 to methanol: importance of metal—oxide and metal—carbide interfaces in the activation of CO2. ACS Catal 5:6696–6706
Duyar MS, Tsai C, Snider JL, Singh JA, Gallo A, Yoo JS, Medford AJ, Abild-Pedersen F, Studt F, Kibsgaard J, Bent SF, Nørskov JK, Jaramillo TF (2018) A highly active molybdenum phosphide catalyst for methanol synthesis from CO and CO2. Angew Chem Int Ed 57:15045–15050
Chinchen GC, Denny PJ, Parker DG, Spencer MS, Whan DA (1987) Mechanism of methanol synthesis from CO2/CO/H2 mixtures over copper/zinc oxide/alumina catalysts: use of 14C-labelled reactants. Appl Catal 30:333–338
Portha JF, Parkhomenko K, Kobl K, Roger A-C, Arab S, Commenge J-C, Falk L (2017) Kinetics of methanol synthesis from carbon dioxide hydrogenation over copper-zinc oxide catalysts. Ind Eng Chem Res 56:13133–13145
Inui T, Hara H, Takeguchi T, Kim JB (1997) Structure and function of Cu-based composite catalysts for highly effective synthesis of methanol by hydrogenation of CO2 and CO. Catal Today 36:25–32
Din IU, Shaharun MS, Alotaibi MA, Alharthi AI, Naeem A (2019) Recent developments on heterogeneous catalytic CO2 reduction to methanol. J CO2 Util 34:20–33
Zhu J, Su Y, Chai J, Muravev V, Kosinov N, Hensen EJM (2020) Mechanism and nature of active sites for methanol synthesis from CO/CO2 on Cu/CeO2. ACS Catal 10:1011532–1011544
Tada S, Watanabe F, Kiyota K, Shimoda N, Hayashi R, Takahashi M, Nariyuki A, Igarashi A, Satokawa S (2017) Ag addition to CuO-ZrO2 catalysts promotes methanol synthesis via CO2 hydrogenation. J Catal 351:107–118
Díez-Ramírez J, Sánchez P, Rodríguez-Gómez A, Valverde JL, Dorado F (2016) Carbon nano fiber-based palladium/zinc catalysts for the hydrogenation of carbon dioxide to methanol at atmospheric pressure. Ind Eng Chem Res 55:3556–3567
Li X, Liu G, Xu D, Hong X, Edman SK (2019) Confinement of subnanometric PdZn at a defect enriched ZnO/ZIF-8 interface for efficient and selective CO2 hydrogenation to methanol. J Mater Chem A 7:23878–23885
Bahruji H, Ruiz Esquius J, Bowker M, Hutchings G, Armstrong RD, Jones W (2018) Solvent free synthesis of PdZn/TiO2 catalysts for the hydrogenation of CO2 to methanol. Top Catal 61:144–153
Bahruji H, Bowker M, Jones W, Hayward J, Ruiz Esquius J, Morgan DJ, Hutchings GJ (2017) PdZn catalysts for CO2 hydrogenation to methanol using chemical vapour impregnation (CVI). Faraday Discuss 197:309–324
Jiang X, Koizumi N, Guo X, Song C (2015) Bimetallic Pd–Cu catalysts for selective CO2 hydrogenation to methanol. Appl Catal B Environ 170–171:173–185
Jiang X, Jiao Y, Moran C, Nie X, Gong Y, Guo X, Walton KS, Song C (2019) CO2 hydrogenation to methanol on Pd–Cu bimetallic catalysts with lower metal loadings. Catal Commun 118:10–14
Collins SE, Delgado JJ, Mira C, Calvino JJ, Bernal S, Chiavassa DL, Baltanás MA, Bonivardi AL (2012) The role of Pd–Ga bimetallic particles in the bifunctional mechanism of selective methanol synthesis via CO2 hydrogenation on a Pd/Ga2O3 catalyst. J Catal 292:90–98
García-Trenco A, White ER, Regoutz A, Payne DJ, Shaffer MSP, Williams CK (2017) Pd2Ga-based colloids as highly active catalysts for the hydrogenation of CO2 to methanol. ACS Catal 7:1186–1196
Fiordaliso EM, Sharafutdinov I, Carvalho HWP, Grunwaldt J, Hansen TH, Chorkendorff WJB, Damsgaard CD (2015) Intermetallic GaPd2 nanoparticles on SiO2 for low-pressure CO2 hydrogenation to methanol: Catalytic performance and in situ characterization. ACS Catal 5:5827–5836
Snider JL, Streibel V, Hubert MA, Choksi TS, Valle E, Upham DC, Schumann J, Duyar MS, Gallo A, Abild-Pedersen F, Jaramilo TF (2019) Revealing the synergy between oxide and alloy phases on the performance of bimetallic In–Pd catalysts for CO2 hydrogenation to methanol. ACS Catal 9:3399–3412
Shi Z, Tan Q, Wu D (2019) A novel core–shell structured CuIn@SiO2 catalyst for CO2 hydrogenation to methanol. AIChE J 65:1047–1058
Shi Z, Tan Q, Tian C, Pan Y, Sun X, Zhang J, Wu D (2019) CO2 hydrogenation to methanol over Cu-In intermetallic catalysts: effect of reduction temperature. J Catal 379:78–89
Jiang X, Nie X, Guo X, Song C, Chen JG (2020) Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem Rev 120:7984–8034
Si C, Ban H, Chen K, Wang X, Cao R, Yi Q, Qin Z, Shi L, Li Z, Cai W, Li C (2020) Insight into the positive effect of Cu0/Cu+ ratio on the stability of Cu-ZnO-CeO2 catalyst for syngas hydrogenation. Appl Catal A Gen 594:11746
Shi Z, Tan Q, Wu D (2019) Enhanced CO2 hydrogenation to methanol over TiO2 nanotubes-supported CuO-ZnO-CeO2 catalyst. Appl Catal A Gen 581:58–66
Asthana S, Samanta C, Bhaumik A, Benerjee B, Voolapalli RV, Saha B (2016) Direct synthesis of dimethyl ether from syngas over Cu-based catalysts: Enhanced selectivity in the presence of MgO. J Catal 334:89–101
Sripada P, Kimpton J, Barlow A, Williams T, Kandasamy S, Bhattacharya S (2020) Investigating the dynamic structural changes on Cu/CeO2 catalysts observed during CO2 hydrogenation. J Catal 381:415–426
Dasireddy VDBC, Štefančič NS, Huš M, Likozar B (2018) Effect of alkaline earth metal oxide (MO) Cu/MO/Al2O3 catalysts on methanol synthesis activity and selectivity via CO2 reduction. Fuel 233:103–112
Dasireddy VDBC, Štefančič NS, Likozar B (2018) Correlation between synthesis pH, structure and Cu/MgO/Al2O3 heterogeneous catalyst activity and selectivity in CO2 hydrogenation to methanol. J CO2 Util 28:189–199
Zhong C, Guo X, Mao D, Wang S, Wu G, Lu G (2015) Effects of alkaline-earth oxides on the performance of a CuO-ZrO2 catalyst for methanol synthesis via CO2 hydrogenation. RSC Adv 5:52958–52965
Huš M, Kopač D, Štefančič NS, Jurković DL, Dasireddy VDBC, Likozar B (2017) Unravelling the mechanisms of CO2 hydrogenation to methanol on Cu-based catalysts using first-principles multiscale modelling and experiments. Catal Sci Technol 7:5900–5913
Hu B, Fujimoto K (2010) Promoting behaviors of alkali compounds in low temperature methanol synthesis over copper-based catalyst. Appl Catal B Environ 95:208–216
Yang R, Zhang Y, Iwama Y, Tsubaki N (2005) Mechanistic study of a new low-temperature methanol synthesis on Cu/MgO catalysts. Appl Catal A Gen 288:126–133
Guo Y, Guo X, Song C, Han X, Liu H, Zhao Z (2019) Capsule-structured copper–zinc catalyst for highly efficient hydrogenation of carbon dioxide to methanol. Chemsuschem 12:1–12
Bakshi MS (2016) How surfactants control crystal growth of nanomaterials. Cryst Growth Des 16:1104–1133
Hait SK, Moulik SP (2001) Determination of critical micelle concentration (CMC) of nonionic surfactants by donar-acceptor interation with iodine and correlation of CMC with hydrophile-lipophile balance and other parameters of the surfactants. J Surfactants Deterg 4:303–309
Abu-Ghunmi L, Badawi M, Fayyad M (2014) Fate of triton X-100 applications on water and soil environments: a review. J Surfactants Deterg 17:833–838
Paschalidou P, Theocharis CR (2018) Tuning the porosity and surface characteristics of nanoporous titania using non-ionic surfactant reverse micelles. RSC Adv 8:29890–29898
Chu Z, Chen H, Yu Y, Wang Q, Fang D (2013) Surfactant-assisted preparation of Cu/ZnO/Al2O3 catalyst for methanol synthesis from syngas. J Mol Catal A Chem 366:48–53
Zander S (2013) Preparation and characterization of Cu/ZnO catalysts for methanol synthesis, PhD Dissertation, The Technical University of Berlin
Marcos FCF, Lin L, Betancourt LE, Senanayake SD, Rodriguez JA, Assaf JM, Giudici R, Assaf EM (2020) Insights into the methanol synthesis mechanism via CO2 hydrogenation over Cu-ZnO-ZrO2 catalysts: effects of surfactant/Cu-Zn-Zr molar ratio. J CO2 Util 41:101215
Li L, Mao D, Yu J, Guo X (2015) Highly selective hydrogenation of CO2 to methanol over CuO-ZnO-ZrO2 catalysts prepared by a surfactant-assisted co-precipitation method. J Power Sources 279:394–404
Günter MM, Ressler T, Jentoft RE, Bems B (2001) Redox behavior of copper oxide/zinc oxide catalysts in the steam reforming of methanol studied by in situ X-ray diffraction and absorption spectroscopy. J Catal 203:133–149
Wang W, Qu Z, Song L, Fu Q (2020) CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: tuning methanol selectivity via metal-support interaction. J Energy Chem 40:22–30
Gao P, Li F, Zhao N, Xiao F, Wei W, Zhong L, Sun Y (2013) Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. Appl Catal A Gen 468:442–452
Dong X, Li F, Zhao N, Xiao F, Wang J, Tan Y (2016) CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by precipitation-reduction method. Appl Catal B Environ 191:8–17
Chen F, Zhang P, Zeng Y, Kosol R, Xiao L, Feng X, Li J, Liu G, Wu J, Yang G, Yoneyama Y, Tsubaki N (2020) Vapor-phase low-temperature methanol synthesis from CO2-containing syngas via self-catalysis of methanol and Cu/ZnO catalysts prepared by solid-state method. Appl Catal B Environ 279:119382
Luo F, Wu D, Gao L, Lian S, Wang E, Kang Z, Lan Y, Xu L (2005) Shape-controlled synthesis of Cu2O nanocrystals assisted by Triton X-100. J Cryst Growth 285:534–540
Yu C, Fan J, Tian B, Stucky GD, Zhao D (2003) Synthesis of mesoporous silica from commercial poly(ethylene oxide)/poly(butylene oxide) copolymers: toward the rational design of ordered mesoporous materials. J Phys Chem B 107:13368–13375
Rasteiro LF, Rossi MALS, Assaf JM, Assaf EM (2020) Low-pressure hydrogenation of CO2 to methanol over Ni-Ga alloys synthesized by a surfactant-assisted co-precipitation method and a proposed mechanism by DRIFTS analysis. Catal Today. https://doi.org/10.1016/j.cattod.2020.05.067
Ali RF, Nazemi AH, Gates BD (2017) Surfactant controlled growth of niobium oxide nanorods. Cryst Growth Des 17:4637–4646
Álvarez A, Bansode A, Urakawa A, Bavykina AV, Wezendonk TA, Makkee M, Gascon J, Kapteijn F (2017) Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem Rev 117:9804–9838
Yang C, Ma Z, Zhao N, Wei W, Hu T, Sun Y (2006) Methanol synthesis from CO2 rich syngas over ZrO2 doped CuZnO catalyst. Catal Today 115:222–227
Sun JT, Metcalfe IS, Sahibzada M (1999) Deactivation of Cu/ZnO/Al2O3 methanol synthesis catalyst by sintering. Ind Eng Chem Res 38:3868–3872
Wu J, Saito M, Takeuchi M, Watanabe T (2001) The stability of Cu/ZnO-based catalysts in methanol synthesis from a CO2-rich feed and from a CO-rich feed. Appl Catal A Gen 218:235–240