Tailoring Selective Laser Melting Process Parameters for NiTi Implants
Tóm tắt
Từ khóa
Tài liệu tham khảo
I. Yadroitsev, L. Thivillon, P. Bertrand, and I. Smurov, Strategy of Manufacturing Components with Designed Internal Structure by Selective Laser Melting of Metallic Powder, Appl. Surf. Sci., 2007, 254(4), p 980–983
D.K. Pattanayak, A. Fukuda, T. Matsushita, M. Takemoto, S. Fujibayashi, K. Sasaki, N. Nishida, T. Nakamura, and T. Kokubo, Bioactive Ti Metal Analogous to Human Cancellous Bone: Fabrication by Selective Laser Melting and Chemical Treatments, Acta Biomater., 2010, 7(3), p 1398–1406
L. Mullen, R.C. Stamp, W.K. Brooks, E. Jones, and C.J. Sutcliffe, Selective Laser Melting: A Regular Unit Cell Approach for the Manufacture of Porous, Titanium, Bone In-Growth Constructs, Suitable for Orthopedic Applications, J. Biomed. Mater. Res. Part B, 2009, 89(2), p 325–334
F.C. Fierz, F. Beckmann, M. Huser, S.H. Irsen, B. Leukers, F. Witte, O. Degistirici, A. Andronache, M. Thie, and B. Müller, The Morphology of Anisotropic 3D-Printed Hydroxyapatite Scaffolds, Biomaterials, 2008, 29(28), p 3799–3806
B.R. Levine, S. Sporer, R.A. Poggie, C.J. Della Valle, and J.J. Jacobs, Experimental and Clinical Performance of Porous Tantalum in Orthopedic Surgery, Biomaterials, 2006, 27(27), p 4671–4681
J.S. Kim, S.H. Lee, J.H. Kang, V.E. Gjunter, S.B. Kang, T.H. Nam, and Y.S. Kwon, The Effect of Processing Variables on the Microstructure and Mechanical Property of a Porous Body Produced by the SHS Method, SMST-2000, Proceedings of SMST 2000, 2000, p 77
T. Imwinkelried, Mechanical Properties of Open-Pore Titanium Foam, J. Biomed Mater. Res. Part A, 2007, 81(4), p 964–970
A. Bansiddhi and D.C. Dunand, Shape-Memory NiTi Foams Produced by Replication of NaCl Space-Holders, Acta Biomater., 2008, 4(6), p 1996–2007
R. Singh, P.D. Lee, T.C. Lindley, R.J. Dashwood, E. Ferrie, and T. Imwinkelried, Characterization of the Structure and Permeability of Titanium Foams for Spinal Fusion Devices, Acta Biomater., 2009, 5(1), p 477–487
R. Schumacher, A. Yildiz, M. Näf, M. de Wild, and E. Schkommodau, Manipulation of the Elastic Behaviour of Artificial Titanium Bone Grafts, Eur. Cells Mater., 2011, 22(Suppl. 1), p 10
R. Huiskes, H. Weinans, and B. Van Rietbergen, The Relationship Between Stress Shielding and Bone Resorption Around Total Hip Stems and the Effects of Flexible Materials, Clin. Orthop. Rel. Res., 1992, 274, p 124–134
H. Meier, C. Haberland, J. Frenzel, and R. Zarnetta, Selective Laser Melting of NiTi Shape Memory Components, Innovative Developments in Design and Manufacturing: Advanced Research in Virtual and Rapid Prototyping, CRC Press-Taylor & Francis Group, 2010, p 233–238
A.T. Clare, P.R. Chalker, S. Davies, C.J. Sutcliffe, and S. Tsopanos, Selective Laser Melting of High Aspect Ratio 3D Nickel–Titanium Structures Two Way Trained for MEMS Applications, Int. J. Mech. Mater. Des., 2008, 4, p 181–187
S. Dudziak, M. Gieseke, H. Haferkamp, S. Barcikowski, and D. Kracht, Functionality of Laser-Sintered Shape Memory Micro-Actuators, Laser Assisted Net Shape Engineering 6, Proceedings of the Lane 2010, Part 2, Elsevier Science Bv, 2010, p 607–615
T. Bormann, S. Friess, M. de Wild, R. Schumacher, G. Schulz, and B. Müller, Determination of Strain Fields in Porous Shape Memory Alloys Using Micro Computed Tomography, Proc SPIE, 2010, 7804, p 78041M
A. Bandyopadhyay, B.V. Krishna, W.C. Xue, and S. Bose, Application of Laser Engineered Net Shaping (LENS) to Manufacture Porous and Functionally Graded Structures for Load Bearing Implants, J. Mater. Sci. Mater. Med., 2009, 20, p 29–34
B.V. Krishna, S. Bose, and A. Bandyopadhyay, Laser Processing of Net-Shape NiTi Shape Memory Alloy, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2007, 38(5), p 1096–1103
B.V. Krishna, S. Bose, and A. Bandyopadhyay, Fabrication of Porous NiTi Shape Memory Alloy Structures Using Laser Engineered Net Shaping, J. Biomed. Mater. Res. Part B, 2009, 89(2), p 481–490
H. Meier, C. Haberland, and J. Frenzel, Structural and Functional Properties of NiTi Shape Memory Alloy Produced by Selective Laser Melting, Innovative Developments in Design and Manufacturing: Advanced Research in Virtual and Rapid Prototyping, CRC Press-Taylor & Francis Group, 2012, p 291–296
ASTM, Standard Specification for Wrought Nickel-Titanium Shape Memory Alloys for Medical Devices and Surgical Implants, F2063, ASTM International
T.W. Duerig and A.R. Pelton, Ti-Ni Shape Memory Alloys, Materials Properties Handbook: Titanium Alloys, R. Boyer, G. Welsch, and E.W. Collings, Ed., ASM International, Materials Park, 1994
T. Bormann, R. Schumacher, B. Müller, and M. de Wild, Fabricating NiTi Shape Memory Scaffolds by Selective Laser Melting, Eur. Cells Mater., 2011, 22(Suppl. 1), p 12
H. Meier and C. Haberland, Experimental Studies on Selective Laser Melting of Metallic Parts, Materialwiss. Werkst., 2008, 39(9), p 665–670
Prüfung metallischer Werkstoffe - Zugproben, DIN 50125:2004-01, Deutsches Institut für Normung e.V.
H. Schumann and H. Oettel, Metallografie, Wiley-VCH, Weinheim, 2005
K. Escher and M. Huhner, Metallographical Preparation of NiTi Shape Memory Alloys, Prakt. Metallogr., 1990, 27(5), p 231–235
J. Khalil-Allafi, A. Dlouhy, and G. Eggeler, Ni4Ti3-Precipitation During Aging of NiTi Shape Memory Alloys and its Influence on Martensitic Phase Transformations, Acta Mater., 2002, 50(17), p 4255–4274
J. Frenzel, E.P. George, A. Dlouhy, C. Somsen, M.F.-X. Wagner, and G. Eggeler, Influence of Ni on Martensitic Phase Transformations in NiTi Shape Memory Alloys, Acta Mater., 2010, 58, p 3444–3458
E. Schuller, M. Bram, H.P. Buchkremer, and D. Stover, Phase Transformation Temperatures for NiTi Alloys Prepared by Powder Metallurgical Processes, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2004, 378(1–2), p 165–169
L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, and J.-P. Kruth, A Study of the Microstructural Evolution During Selective Laser Melting of Ti-6Al-4V, Acta Mater., 2009, 58(9), p 3303–3312