Tailoring Excited State Properties and Energy Levels Arrangement via Subtle Structural Design on D‐π‐A Materials

Chinese Journal of Chemistry - Tập 35 Số 10 - Trang 1559-1568 - 2017
Xiaoming Liang1, Zhiheng Wang1, Liangxuan Wang1, Muddasir Hanif1, Dehua Hu1, Shi‐Jian Su1, Zengqi Xie1, Yu Gao2, Bing Yang2, Yuguang Ma1
1Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong 510640 China
2State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130012 China

Tóm tắt

The donor‐π‐conjugated‐acceptor (D‐π‐A) structure is an important design for the luminescent materials because of its diversity in the selections of donor, π‐bridge and acceptor groups. Herein, we demonstrate two examples of D‐π‐A structures capable to finely modulate the excited state properties and arrangement of energy levels, TPA‐AN‐BP and CZP‐AN‐BP, which possess the same acceptor and π‐bridge but different donor. The investigation of their photophysical properties and DFT calculation revealed that the D‐π‐A structure with proper donor, π‐bridge and acceptor can result in separation of frontier molecular orbitals on the corresponding donor and acceptor with an obvious overlap on the π‐bridge, resulting in a hybridized local and charge‐transfer (HLCT) excited state with high photoluminescent (PL) efficiencies. Meanwhile, their singlet and triplet states are arranged on corresponding moieties with large energy gap between T2 and T1, and a small energy gap between S1 and T2, which favor the reverse intersystem crossing (RISC) from high‐lying triplet levels to singlet levels. As a result, the sky‐blue emission non‐doped OLED based on the TPA‐AN‐BP reached maximum external quantum efficiency (EQE) of 4.39% and a high exciton utilization efficiency (EUE) of 77%. This study demonstrates a new strategy to construct highly efficient OLED materials.

Từ khóa


Tài liệu tham khảo

10.1021/cm0618042

10.1007/s10854-016-4676-1

10.1039/C4RA12656D

10.1016/j.optmat.2012.09.032

10.1016/j.dyepig.2012.05.020

10.1021/ja500280r

10.1021/jp808275z

10.1021/acsami.6b10162

10.1039/C5TA07254A

10.1039/C5TA06548H

10.1021/acs.chemmater.5b02685

10.1016/j.orgel.2013.06.022

10.1039/c2cc31066j

10.1021/cm103314t

10.1039/c0jm02143a

10.1039/C4TC02459A

10.1039/C5CC03492B

10.1002/adom.201500258

10.1002/adma.201402532

10.1039/C6TC00418K

10.1038/nature11687

10.1038/nmat4154

10.1038/nphoton.2014.12

10.21127/yaoyigc20150003

10.21127/yaoyigc20160005

10.1021/cm400945h

10.1016/j.dyepig.2016.02.006

10.1002/adom.201600217

10.1021/cm201789u

10.1021/cm4030414

Pawlicki M.;Collins H. A.;Denning R. G.;Anderson H. L.Angew.Chem. Int.Ed.2009 48 3244.

10.1021/cm7022136

10.1039/B410016F

10.1002/chem.201201512

10.1021/jo100898a

10.1002/asia.201600727

10.1021/acs.jpcc.6b01334

10.1002/adma.200801023

10.1039/c0jm03300f

10.1016/j.dyepig.2015.11.001

10.1021/ol201751p

10.1002/adfm.201200116

10.1002/adfm.201301750

10.1039/c3cc47130f

10.1021/acs.jpcc.5b03996

10.1021/acsami.5b10129

10.1007/s11426-013-5046-y

10.1098/rsta.2014.0318

10.1098/rspa.1958.0080

Lippert V. E., 1957, Electrochemistry., 61, 962

10.1246/bcsj.29.465

10.1021/cr940745l

10.1002/adom.201400154