Tailoring Bloch-type Stripe Domain Wall by Spin–orbit Torque for Reconfigurable Magnonic Waveguides

Springer Science and Business Media LLC - Tập 35 - Trang 3249-3254 - 2022
Jingsi Li1, Xiangjun Xing1,2
1School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangzhou, China
2Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou, China

Tóm tắt

Efficient manipulation of magnetic textures by spin–orbit torque is of great significance to spintronic and magnonic technologies. Here, using micromagnetic simulations, we exploit the dynamics of a Bloch-type stripe domain wall in a magnetic nanowire induced by the spin-Hall effect associated with a ferromagnet/heavy metal structure. Our numerical results demonstrate that, contrary to the Néel-type stripe domain wall, the stripe Bloch domain wall varies its internal spin configuration in response to the applied electric current and, in the meantime, travels toward an edge of the nanowire. The higher the current density applied, the nearer the domain wall approaches the edge. Thereby, the stripe Bloch domain wall is movable to any desired position with respect to the edge by fine-tuning the current density and/or its action time. These discoveries will find application in reconfigurable spin-wave channeling based on magnetic domain walls.

Tài liệu tham khảo

Lenk, B., Ulrichs, H., Garbs, F., Muenzenberg, M.: The building blocks of magnonics. Phys. Rep. 507, 107–136 (2011) Khitun, A., Bao, M., Wang, K.L.: Magnonic logic circuits. J. Phys. D 43, 264005 (2010) Kajiwara, Y., Harii, K., Takahashi, S., Ohe, J., Uchida, K., Mizuguchi, M., Umezawa, H., Kawai, H., Ando, K., Takanashi, K., Maekawa, S., Saitoh, E.: Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010) Serga, A.A., Chumak, A.V., Hillebrands, B.: YIG magnonics. J. Phys. D 43, 264002 (2010) Tomasello, R., Martinez, E., Zivieri, R., Torres, L., Carpentieri, M., Finocchio, G.: A strategy for the design of skyrmion racetrack memories. Sci. Rep. 4, 6784 (2014) Chumak, A.V., Vasyuchka, V.I., Serga, A.A., Hillebrands, B.: Magnon spintronics. Nat. Phys. 11, 453–461 (2015) Kozhevnikov, A., Gertz, F., Dudko, G., Filimonov, Y., Khitun, A.: Pattern recognition with magnonic holographic memory device. Appl. Phys. Lett. 106, 142409 (2015) Csaba, G., Papp, A., Porod, W.: Spin-wave based realization of optical computing primitives. J. Appl. Phys. 115, 17C741 (2014) Sluka, V., Schneider, T., Gallardo, R.A., Kakay, A., Weigand, M., Warnatz, T., Mattheiss, R., Roldan-Molina, A., Landeros, P., Tiberkevich, V., Slavin, A., Schutz, G., Erbe, A., Deac, A., Lindner, J., Raabe, J., Fassbender, J., Wintz, S.: Emission and propagation of 1D and 2D spin waves with nanoscale wavelengths in anisotropic spin textures. Nat. Nanotechnol. 14, 328–333 (2019) Albisetti, E., Pettio, D., Sala, G., Silvani, R., Tacchi, S., Finizio, S., Wintz, S., Calo, A., Zheng, X., Raabe, J., Riedo, E., Bertacco, R.: Nanoscale spin-wave circuits based on engineered reconfigurable spin-textures. Commun. Phys. 1, 56 (2018) Winter, J.M.: Bloch wall excitation. Application to nuclear resonance in a Bloch wall. Phys. Rev. 124, 452–459 (1961) Xing, X., Zhou, Y.: Fiber optics for spin waves. NPG Asia Mater. 8, e246 (2016) Wagner, K., Kakay, A., Schultheiss, K., Henschke, A., Sebastian, T., Schultheiss, H.: Magnetic domain walls as reconfigurable spin-wave nanochannels. Nat. Nanotechnol. 11, 432–436 (2016) Garcia-Sanchez, F., Borys, P., Soucaille, R., Adam, J.-P., Stamps, R.L., Kim, J.-V.: Narrow magnonic waveguides based on domain walls. Phys. Rev. Lett. 114, 247206 (2015) Wang, X.S., Zhang, H.W., Wang, X.R.: Topological magnonics: a paradigm for spin-wave manipulation and device design. Phys. Rev. Appl. 9, 024029 (2018) Yan, P., Wang, X.S., Wang, X.R.: All-magnonic spin-transfer torque and domain wall propagation. Phys. Rev. Lett. 107, 177207 (2011) Xing, X., Pong, P.W.T., Åkerman, J., Zhou, Y.: Paving spin-wave fibers in magnonic nanocircuits using spin-orbit torque. Phys. Rev. Appl. 7, 054016 (2017) Park, H.-K., Lee, J.-H., Yang, J., Kim, S.-K.: Interaction of spin waves propagating along narrow domain walls with a magnetic vortex in a thin-film-nanostrip cross-structure. J. Appl. Phys. 127, 183906 (2020) Wang, X.S., Su, Y., Wang, X.R.: Topologically protected unidirectional edge spin waves and beam splitter. Phys. Rev. B 95, 014435 (2017) Lan, J., Yu, W., Wu, R., Xiao, J.: Spin-wave diode. Phys. Rev. X 5, 041049 (2015) Kostylev, M.P., Serga, A.A., Schneider, T., Leven, B., Hillebrands, B.: Spin-wave logical gates. Appl. Phys. Lett. 87, 153501 (2005) Xing, X., Wang, T., Zhou, Y.: Amplifying spin waves along Néel domain wall by spin–orbit torque. Appl. Phys. Lett. 118, 062405 (2021) Khvalkovskiy, A.V., Cros, V., Apalkov, D., Nikitin, V., Krounbi, M., Zvezdin, K.A., Anane, A., Grollier, J., Fert, A.: Matching domain-wall configuration and spin-orbit torques for efficient domain-wall motion. Phys. Rev. B 87, 020402 (2013) Jiang, W., Zhang, X., Yu, G., Zhang, W., Wang, X., Jungfleisch, M.B., Pearson, J.E., Cheng, X., Heinonen, O., Wang, K.L., Zhou, Y., Hoffmann, A., te Velthuis, S.G.E.: Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2017) Yu, G., Upadhyaya, P., Fan, Y., Alzate, J.G., Jiang, W., Wong, K.L., Takei, S., Bender, S.A., Chang, L.-T., Jiang, Y., Lang, M., Tang, J., Wang, Y., Tserkovnyak, Y., Amiri, P.K., Wang, K.L.: Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields. Nat. Nanotechnol. 9, 548–554 (2014) Hirsch, J.E.: Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999) Ando, K., Takahashi, S., Harii, K., Sasage, K., Ieda, J., Maekawa, S., Saitoh, E.: Electric manipulation of spin relaxation using the spin hall effect. Phys. Rev. Lett. 101, 036601 (2008) Vansteenkiste, A., Leliaert, J., Dvornik, M., Helsen, M., Garcia-Sanchez, F., Van Waeyenberge, B.: The design and verification of MuMax3. AIP Adv. 4, 107133 (2014) Litzius, K., Lemesh, I., Kruger, B., Bassirian, P., Caretta, L., Richter, K., Buttner, F., Sato, K., Tretiakov, O.A., Forster, J., Reeve, R.M., Weigand, M., Bykova, L., Stoll, H., Schutz, G., Beach, G.S.D., Klaui, M.: Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017) Woo, S., Litzius, K., Kruger, B., Im, M.Y., Caretta, L., Richter, K., Mann, M., Krone, A., Reeve, R.M., Weigand, M., Agrawal, P., Lemesh, I., Mawass, M.A., Fischer, P., Klaui, M., Beach, G.S.D.: Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016) Legrand, W., Maccariello, D., Reyren, N., Garcia, K., Moutafis, C., Moreau-Luchaire, C., Coffin, S., Bouzehouane, K., Cros, V., Fert, A.: Room-temperature current-induced generation and motion of sub-100 nm skyrmions. Nano Lett. 17, 2703–2712 (2017) Emori, S., Bauer, U., Ahn, S.M., Martinez, E., Beach, G.S.D.: Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013) Thiaville, A., Rohart, S., Jue, E., Cros, V., Fert, A.: Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. Europhys. Lett. 100, 57002 (2012) Hu, B., Wang, X.R.: Instability of Walker propagating domain wall in magnetic nanowires. Phys. Rev. Lett. 111, 027205 (2013) Wang, X.S., Yan, P., Shen, Y.H., Bauer, G.E.W., Wang, X.R.: Domain wall propagation through spin wave emission. Phys. Rev. Lett. 109, 167209 (2012)