Tailored Band Gaps in Sulfur‐ and Nitrogen‐Containing Porous Donor–Acceptor Polymers

Chemistry - A European Journal - Tập 23 Số 53 - Trang 13023-13027 - 2017
Dana Schwarz1, Yaroslav S. Kochergin1, Amitava Acharjya2, Arun Ichangi1,3, Maksym Opanasenko4, Jiřı́ Čejka4, Uwe Lappan5, Pál Árki6, Junjie He7, Johannes Schmidt2, Petr Nachtigall7, Arne Thomas2, Ján Tarábek3, Michael J. Bojdys1,3
1Department of Organic Chemistry, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
2Department of Functional Materials, Technical University Berlin, Hardenbergstr. 40, 10623 Berlin, Germany
3Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
4Heyrovsky Institute for Physical Chemistry Academy of Science Czech Republic Dolejškova 3 182 23 Prague 8 Czech Republic
5Leibniz-Institut fuer Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
6Technical University Bergakademie Freiberg, Gustav Zeuner Str. 3, 09599 Freiberg, Germany
7Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic

Tóm tắt

AbstractDonor–acceptor dyads hold the key to tuning of electrochemical properties and enhanced mobility of charge carriers, yet their incorporation into a heterogeneous polymer network proves difficulty owing to the fundamentally different chemistry of the donor and acceptor subunits. A family of sulfur‐ and nitrogen‐containing porous polymers (SNPs) are obtained via Sonogashira–Hagihara cross‐coupling and combine electron‐withdrawing triazine (C3N3) and electron‐donating, sulfur‐containing linkers. Choice of building blocks and synthetic conditions determines the optical band gap (from 1.67 to 2.58 eV) and nanoscale ordering of these microporous materials with BET surface areas of up to 545 m2 g−1 and CO2 capacities up to 1.56 mmol g−1. Our results highlight the advantages of the modular design of SNPs, and one of the highest photocatalytic hydrogen evolution rates for a cross‐linked polymer without Pt co‐catalyst is attained (194 μmol h−1 g−1).

Từ khóa


Tài liệu tham khảo

 

10.1002/anie.200701595

10.1002/ange.200701595

10.1021/jp502336a

10.1002/smll.200801762

10.1039/b600349d

10.1021/cs200131g

10.1039/C7CS00071E

 

10.1002/adma.200903436

10.1002/anie.200705710

10.1002/ange.200705710

10.1002/adma.201200751

 

10.1021/ma970528x

10.1002/ejoc.200600066

10.1063/1.430700

10.1021/ja104160f

10.1039/b209361h

10.1002/pola.21091

10.1021/jp104710y

10.1002/marc.200500773

10.1002/pola.22418

10.1039/c0cp03014g

10.1002/ejoc.200900641

10.1021/ic3027336

10.1039/C4RA12626B

Ren S., x., 3

10.1002/chem.201600783

 

10.1002/chem.201405330

10.1021/ja3059827

10.1002/chem.201402278

10.1002/anie.201510542

10.1002/ange.201510542

10.1002/(SICI)1521-4095(199901)11:1<11::AID-ADMA11>3.0.CO;2-3

10.1021/cr0306586

10.1016/j.ultramic.2010.10.017

 

10.1021/la402630s

10.1021/acs.macromol.6b00901

10.1039/c3py00690e

10.1039/C6PY01453D

10.1021/acsami.6b06569

10.1002/pc.20472

10.1021/jp051345c

 

10.1038/281657a0

10.1002/anie.201403375

10.1002/ange.201403375

10.1002/ente.201500478

10.1002/anie.201206817

10.1002/ange.201206817

Li L., y., 49

10.1002/anie.201101182

10.1002/ange.201101182

10.1039/C6CC03536A

10.1021/ja511552k