Tabular data: Deep learning is not all you need

Information Fusion - Tập 81 - Trang 84-90 - 2022
Ravid Shwartz-Ziv1, Amitai Armon1
1IT AI Group, Intel, Israel

Tóm tắt

Từ khóa


Tài liệu tham khảo

Devlin, 2019, BERT: Pre-training of deep bidirectional transformers for language understanding

K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.

A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, K. Kavukcuoglu, WaveNet: A generative model for raw audio, in: Proc. 9th ISCA Workshop on Speech Synthesis Workshop (SSW 9), 2016, p. 125.

T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, 2016, pp. 785–794.

Wolpert, 1997, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1, 67, 10.1109/4235.585893

Friedman, 2001, Greedy function approximation: a gradient boosting machine, Ann. Statist., 1189

L. Prokhorenkova, G. Gusev, A. Vorobev, A.V. Dorogush, A. Gulin, CatBoost: unbiased boosting with categorical features, in: 32nd Conference on Neural Information Processing Systems (NeurIPS), 2018.

Arik, 2021, Tabnet: Attentive interpretable tabular learning, Vol. 35, 6679

Katzir, 2021, Net-DNF: Effective deep modeling of tabular data

Popov, 2020, Neural oblivious decision ensembles for deep learning on tabular data

Deng, 2009, Imagenet: A large-scale hierarchical image database, 248

Wang, 2018, GLUE: A multi-task benchmark and analysis platform for natural language understanding, 353

Ke, 2017, LightGBM: A highly efficient gradient boosting decision tree, Vol. 30

Prokhorenkova, 2018, Catboost: Unbiased boosting with categorical features, 6639

Zhao, 2019, Deep learning with XGBoost for real estate appraisal, 1396

Ramraj, 2016, Experimenting XGBoost algorithm for prediction and classification of different datasets, Int. J. Control Theory Appl., 9, 651

Badirli, 2020

Hazimeh, 2020, The tree ensemble layer: Differentiability meets conditional computation, 4138

Huang, 2020

G. Klambauer, T. Unterthiner, A. Mayr, S. Hochreiter, Self-normalizing neural networks, in: Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, pp. 972–981.

Baosenguo, 2021

Kontschieder, 2015, Deep neural decision forests, 1467

Somepalli, 2021

Kadra, 2021

I. Shavitt, E. Segal, Regularization learning networks: deep learning for tabular datasets, in: 32nd Conference on Neural Information Processing Systems (NeurIPS), 2018.

A. Beutel, P. Covington, S. Jain, C. Xu, J. Li, V. Gatto, E.H. Chi, Latent cross: making use of context in recurrent recommender systems, in: WSDM 2018: The Eleventh ACM International Conference on Web Search and Data Mining, 2018.

R. Caruana, A. Niculescu-Mizil, G. Crew, A. Ksikes, Ensemble selection from libraries of models, in: Proceedings of the Twenty-First International Conference on Machine Learning, 2004, p. 18.

Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324

Breiman, 1996, Bagging predictors, Mach. Learn., 24, 123, 10.1007/BF00058655

Freund, 1996, Experiments with a new boosting algorithm, Vol. 96, 148

Wolpert, 1992, Stacked generalization, Neural Netw., 5, 241, 10.1016/S0893-6080(05)80023-1

Cortes, 1995, Support-vector networks, Mach. Learn., 20, 273, 10.1007/BF00994018

Dua, 2017

Kaggle, 2019

Vanschoren, 2014, OpenML: networked science in machine learning, ACM SIGKDD Explor. Newsl., 15, 49, 10.1145/2641190.2641198

Qin, 2013

Pascal, 2008

Kaggle, 2019

IBM, 2019

Bergstra, 2015, Hyperopt: a python library for model selection and hyperparameter optimization, Comput. Sci. Discov., 8, 10.1088/1749-4699/8/1/014008

Friedman, 1937, The use of ranks to avoid the assumption of normality implicit in the analysis of variance, J. Amer. Statist. Assoc., 32, 675, 10.1080/01621459.1937.10503522

D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: 8th International Conference on Learning Representations, ICLR 2020, 2015.

Tang, 2018, An experimental analysis of the power consumption of convolutional neural networks for keyword spotting, 5479

Mitchell, 2018