Tabular data: Deep learning is not all you need
Tóm tắt
Từ khóa
Tài liệu tham khảo
Devlin, 2019, BERT: Pre-training of deep bidirectional transformers for language understanding
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, K. Kavukcuoglu, WaveNet: A generative model for raw audio, in: Proc. 9th ISCA Workshop on Speech Synthesis Workshop (SSW 9), 2016, p. 125.
T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, 2016, pp. 785–794.
Wolpert, 1997, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1, 67, 10.1109/4235.585893
Friedman, 2001, Greedy function approximation: a gradient boosting machine, Ann. Statist., 1189
L. Prokhorenkova, G. Gusev, A. Vorobev, A.V. Dorogush, A. Gulin, CatBoost: unbiased boosting with categorical features, in: 32nd Conference on Neural Information Processing Systems (NeurIPS), 2018.
Arik, 2021, Tabnet: Attentive interpretable tabular learning, Vol. 35, 6679
Katzir, 2021, Net-DNF: Effective deep modeling of tabular data
Popov, 2020, Neural oblivious decision ensembles for deep learning on tabular data
Deng, 2009, Imagenet: A large-scale hierarchical image database, 248
Wang, 2018, GLUE: A multi-task benchmark and analysis platform for natural language understanding, 353
Ke, 2017, LightGBM: A highly efficient gradient boosting decision tree, Vol. 30
Prokhorenkova, 2018, Catboost: Unbiased boosting with categorical features, 6639
Zhao, 2019, Deep learning with XGBoost for real estate appraisal, 1396
Ramraj, 2016, Experimenting XGBoost algorithm for prediction and classification of different datasets, Int. J. Control Theory Appl., 9, 651
Badirli, 2020
Hazimeh, 2020, The tree ensemble layer: Differentiability meets conditional computation, 4138
Huang, 2020
G. Klambauer, T. Unterthiner, A. Mayr, S. Hochreiter, Self-normalizing neural networks, in: Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, pp. 972–981.
Baosenguo, 2021
Kontschieder, 2015, Deep neural decision forests, 1467
Somepalli, 2021
Kadra, 2021
I. Shavitt, E. Segal, Regularization learning networks: deep learning for tabular datasets, in: 32nd Conference on Neural Information Processing Systems (NeurIPS), 2018.
A. Beutel, P. Covington, S. Jain, C. Xu, J. Li, V. Gatto, E.H. Chi, Latent cross: making use of context in recurrent recommender systems, in: WSDM 2018: The Eleventh ACM International Conference on Web Search and Data Mining, 2018.
R. Caruana, A. Niculescu-Mizil, G. Crew, A. Ksikes, Ensemble selection from libraries of models, in: Proceedings of the Twenty-First International Conference on Machine Learning, 2004, p. 18.
Freund, 1996, Experiments with a new boosting algorithm, Vol. 96, 148
Dua, 2017
Kaggle, 2019
Vanschoren, 2014, OpenML: networked science in machine learning, ACM SIGKDD Explor. Newsl., 15, 49, 10.1145/2641190.2641198
Qin, 2013
Pascal, 2008
Kaggle, 2019
IBM, 2019
Bergstra, 2015, Hyperopt: a python library for model selection and hyperparameter optimization, Comput. Sci. Discov., 8, 10.1088/1749-4699/8/1/014008
Friedman, 1937, The use of ranks to avoid the assumption of normality implicit in the analysis of variance, J. Amer. Statist. Assoc., 32, 675, 10.1080/01621459.1937.10503522
D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: 8th International Conference on Learning Representations, ICLR 2020, 2015.
Tang, 2018, An experimental analysis of the power consumption of convolutional neural networks for keyword spotting, 5479
Mitchell, 2018