TaRAR1 và TaSGT1 kết hợp với TaHsp90 để chức năng trong sự phát triển của cây con lúa mì (Triticum aestivum L.) và khả năng kháng bệnh rỉ sọc

Plant Molecular Biology - Tập 87 - Trang 577-589 - 2015
Guan-Feng Wang1,2, Renchun Fan1, Xianping Wang1, Daowen Wang1, Xiangqi Zhang1
1The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
2University of Chinese Academy of Sciences, Beijing, China

Tóm tắt

RAR1 và SGT1 là những đồng chaperone quan trọng của Hsp90. Chúng tôi đã chỉ ra rằng TaHsp90.1 là cần thiết cho sự phát triển của cây con lúa mì, và rằng TaHsp90.2 và TaHsp90.3 là thiết yếu cho khả năng kháng (R) đối với nấm rỉ sọc. Ở đây, chúng tôi báo cáo về việc đặc trưng hóa các gen TaRAR1 và TaSGT1 ở lúa mì bánh. TaRAR1 và TaSGT1 mỗi gen có ba đồng vị, được đặt trên nhiễm sắc thể nhóm 2 và 3 của lúa mì, tương ứng. Việc ức chế mạnh mẽ sự phát triển của cây con được quan sát sau khi làm giảm hoạt động của TaSGT1 nhưng không phải TaRAR1. Ngược lại, việc giảm biểu hiện của TaRAR1 hoặc TaSGT1 đều có thể làm tổn hại đến khả năng kháng gen R đối với sự nhiễm bệnh nấm rỉ sọc. Các phản ứng tương tác protein-protein đã được phát hiện giữa TaRAR1, TaSGT1 và TaHsp90. Phần đầu N-terminus của TaHsp90, các miền CHORD-I và CHORD-II của TaRAR1 và miền CS của TaSGT1 có thể là yếu tố thiết yếu cho các tương tác giữa ba protein này. Dựa trên công việc này và nghiên cứu trước đó của chúng tôi về TaHsp90, chúng tôi suy đoán rằng sự tương tác TaSGT1–TaHsp90.1 là quan trọng trong việc duy trì sự phát triển của cây con lúa mì bánh. Các tương tác TaRAR1–TaSGT1–TaHsp90.2 và TaRAR1–TaSGT1–TaHsp90.3 liên quan đến việc kiểm soát khả năng kháng bệnh rỉ sọc. Thông tin mới mà chúng tôi thu được ở đây sẽ hỗ trợ thêm các nghiên cứu chức năng về các phức hợp TaRAR1–TaSGT1–TaHsp90 trong việc điều chỉnh sự phát triển và khả năng kháng bệnh của lúa mì bánh.

Từ khóa


Tài liệu tham khảo

Austin MJ, Muskett P, Kahn K, Feys BJ, Jones JD, Parker JE (2002) Regulatory role of SGT1 in early R gene-mediated plant defenses. Science 295:2077–2080 Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Lefert P (2002) The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 295:2073–2076 Azevedo C, Betsuyaku S, Peart J, Takahashi A, Noel L, Sadanandom A, Casais C, Parker J, Shirasu K (2006) Role of SGT1 in resistance protein accumulation in plant immunity. EMBO J 25:2007–2016 Bansal PK, Abdulle R, Kitagawa K (2004) Sgt1 associates with HSP90: an initial step of assembly of the core kinetochore complex. Mol Cell Biol 24:8069–8079 Bhaskar PB, Raasch JA, Kramer LC, Neumann P, Wielgus SM, Austin-Phillips S, Jiang J (2008) Sgt1, but not Rar1, is essential for the RB-mediated broad-spectrum resistance to potato late blight. BMC Plant Biol 8:8 Bhattarai KK, Li Q, Liu Y, Dinesh-Kumar SP, Kaloshian I (2007) The MI-1-mediated pest resistance requires Hsp90 and Sgt1. Plant Physiol 144:312–323 Bieri S, Mauch S, Shen QH, Peart J, Devoto A, Casais C et al (2004) RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance. Plant Cell 16:3480–3495 Boter M, Amigues B, Peart J et al (2007) Structural and functional analysis of SGT1 reveals that its interaction with HSP90 is required for the accumulation of Rx, an R protein involved in plant immunity. Plant Cell 19:3791–3804 Cantu D, Yang B, Ruan R, Li K, Menzo V, Fu D, Chern M, Ronald PC, Dubcovsky J (2013) Comparative analysis of protein–protein interactions in the defense response of rice and wheat. BMC Genom 14:166 Catlett MG, Kaplan KB (2006) Sgt1p is a unique co-chaperone that acts as a client adaptor to link Hsp90 to Skp1p. J Biol Chem 281:33739–33748 Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833 Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445 Fu DQ, Ghabrial S, Kachroo A (2009) GmRAR1 and GmSGT1 are required for basal, R gene-mediated and systemic acquired resistance in soybean. Mol Plant Microbe Interact 22:86–95 Gray WM, Muskett PR, Chuang HW, Parker JE (2003) Arabidopsis SGT1b is required for SCF(TIR1)-mediated auxin response. Plant Cell 15:1310–1319 Hahn JS (2005) Regulation of Nod1 by Hsp90 chaperone complex. FEBS Lett 579:4513–4519 Halterman DA, Wise RP (2004) A single-amino acid substitution in the sixth leucine-rich repeat of barley MLA6 and MLA13 alleviates dependence on RAR1 for disease resistance signaling. Plant J 38:215–226 Hammond-Kosack KE, Parker JE (2003) Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol 14:177–193 Holt BF 3rd, Belkhadir Y, Dangl JL (2005) Antagonistic control of disease resistance protein stability in the plant immune system. Science 309:929–932 Jakob U, Buchner J (1994) Assisting spontaneity: the role of Hsp90 and small Hsps as molecular chaperones. Trends Biochem Sci 19:205–211 Kang B, Zhang Z, Wang L, Zheng L, Mao W, Li M, Wu Y, Wu P, Mo X (2013) OsCYP2, a chaperone involved in degradation of auxin-responsive proteins, plays crucial roles in rice lateral root initiation. Plant J 74:86–97 Kanzaki H, Saitoh H, Ito A, Fujisawa S, Kamoun S, Katou S, Yoshioka H, Terauchi R (2003) Cytosolic HSP90 and HSP70 are essential components of INF1-mediated hypersensitive response and non-host resistance to Pseudomonas cichorii in Nicotiana benthamiana. Mol Plant Pathol 4:383–391 Lee YT, Jacob J, Michowski W, Nowotny M, Kuznicki J, Chazin WJ (2004) Human Sgt1 binds HSP90 through the CHORD-Sgt1 domain and not the tetratricopeptide repeat domain. J Biol Chem 279:16511–16517 Leister RT, Dahlbeck D, Day B, Li Y, Chesnokova O, Staskawicz BJ (2005) Molecular genetic evidence for the role of SGT1 in the intramolecular complementation of Bs2 protein activity in Nicotiana benthamiana. Plant Cell 17:1268–1278 Liu Y, Schiff M, Serino G, Deng XW, Dinesh-Kumar SP (2002) Role of SCF ubiquitin-ligase and the COP9 signalosome in the N gene-mediated resistance response to tobacco mosaic virus. Plant Cell 14:1483–1496 Liu Y, Burch-Smith T, Schiff M, Feng S, Dinesh-Kumar SP (2004) Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants. J Biol Chem 279:2101–2108 Mur LA, Kenton P, Lloyd AJ, Ougham H, Prats E (2008) The hypersensitive response; the centenary is upon us but how much do we know? J Exp Bot 59:501–520 Muskett PR, Kahn K, Austin MJ, Moisan LJ, Sadanandom A, Shirasu K, Jones JD, Parker JE (2002) Arabidopsis RAR1 exerts rate-limiting control of R gene-mediated defenses against multiple pathogens. Plant Cell 14:979–992 Negeri A, Wang GF, Benavente L, Kibiti CM, Chaikam V, Johal G, Balint-Kurti P (2013) Characterization of temperature and light effects on the defense response phenotypes associated with the maize Rp1-D21 autoactive resistance gene. BMC Plant Biol 13:106 Pearl LH, Prodromou C (2006) Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 75:271–294 Peart JR, Lu R, Sadanandom A et al (2002) Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proc Natl Acad Sci USA 99:10865–10869 Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Huang L et al (2013) The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341:786–788 Queitsch C, Sangster TA, Lindquist S (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417:618–624 Riggs DL, Cox MB, Cheung-Flynn J, Prapapanich V, Carrigan PE, Smith DF (2004) Functional specificity of co-chaperone interactions with Hsp90 client proteins. Crit Rev Biochem Mol Biol 39:279–295 Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018 Samakovli D, Thanou A, Valmas C, Hatzopoulos P (2007) Hsp90 canalizes developmental perturbation. J Exp Bot 58:3513–3524 Sangster TA, Bahrami A, Wilczek A, Watanabe E, Schellenberg K, McLellan C, Kelley A, Kong SW, Queitsch C, Lindquist S (2007) Phenotypic diversity and altered environmental plasticity in Arabidopsis thaliana with reduced Hsp90 levels. PLoS ONE 2:e648 Schulze-Lefert P (2004) Plant immunity: the origami of receptor activation. Curr Biol 14:R22–R24 Scofield SR, Huang L, Brandt AS, Gill BS (2005) Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol 138:2165–2173 Shen QH, Zhou F, Bieri S, Haizel T, Shirasu K, Schulze-Lefert P (2003) Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus. Plant Cell 15:732–744 Shirasu K, Schulze-Lefert P (2003) Complex formation, promiscuity and multi-functionality: protein interactions in disease-resistance pathways. Trends Plant Sci 8:252–258 Shirasu K, Lahaye T, Tan MW, Zhou F, Azevedo C, Schulze-Lefert P (1999) A novel class of eukaryotic zinc-binding proteins is required for disease resistance signaling in barley and development in C. elegans. Cell 99:355–366 Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG, Jones JD (1995) Molecular genetics of plant disease resistance. Science 268:661–667 Tai YS (2008) Interactome of signaling networks in wheat: the protein-protein interaction between TaRAR1 and TaSGT1. Mol Biol Rep 35:337–343 Takahashi A, Casais C, Ichimura K, Shirasu K (2003) Hsp90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proc Natl Acad Sci USA 100:11777–11782 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 Thao NP, Chen L, Nakashima A, Hara S, Umemura K, Takahashi A, Shirasu K, Kawasaki T, Shimamoto K (2007) RAR1 and HSP90 form a complex with Rac/Rop GTPase and function in innate-immune responses in rice. Plant Cell 19:4035–4045 Tornero P, Merritt P, Sadanandom A, Shirasu K, Innes RW, Dangl JL (2002) RAR1 and NDR1 contribute quantitatively to disease resistance in arabidopsis, and their relative contributions are dependent on the r gene assayed. Plant Cell 14:1005–1015 Walter M, Chaban C, Schutze K et al (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438 Wang Y, Gao M, Li Q, Wang L, Wang J, Jeon JS, Qu N, Zhang Y, He Z (2008) OsRAR1 and OsSGT1 physically interact and function in rice basal disease resistance. Mol Plant Microbe Interact 21:294–303 Wang X, Liu W, Chen X, Tang C, Dong Y, Ma J et al (2010) Differential gene expression in incompatible interaction between wheat and stripe rust fungus revealed by cDNA-AFLP and comparison to compatible interaction. BMC Plant Biol 10:9 Wang GF, Seabolt S, Hamdoun S, Ng G, Park J, Lu H (2011a) Multiple roles of WIN3 in regulating disease resistance, cell death, and flowering time in Arabidopsis. Plant Physiol 156:1508–1519 Wang GF, Wei X, Fan R et al (2011b) Molecular analysis of common wheat genes encoding three types of cytosolic heat shock protein 90 (Hsp90): functional involvement of cytosolic Hsp90 s in the control of wheat seedling growth and disease resistance. New Phytol 191:418–431 Xing L, Qian C, Cao A et al (2013) The Hv-SGT1 gene from Haynaldia villosa contributes to resistances towards both biotrophic and hemi-biotrophic pathogens in common wheat (Triticum aestivum L.). PLoS ONE 8:e72571 Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protocol 2:1565–1572 Zhang Y, Dorey S, Swiderski M, Jones JD (2004) Expression of RPS4 in tobacco induces an AvrRps4-independent HR that requires EDS1, SGT1 and HSP90. Plant J 40:213–224 Zhang M, Boter M, Li K, Kadota Y, Panaretou B, Prodromou C, Shirasu K, Pearl LH (2008) Structural and functional coupling of HSP90- and Sgt1-centred multi-protein complexes. EMBO J 27:2789–2798 Zhang M, Kadota Y, Prodromou C, Shirasu K, Pearl LH (2010) Structural basis for assembly of Hsp90-Sgt1-CHORD protein complexes: implications for chaperoning of NLR innate immunity receptors. Mol Cell 39:269–281 Zhou H, Li S, Deng Z et al (2007) Molecular analysis of three new receptor-like kinase genes from hexaploid wheat and evidence for their participation in the wheat hypersensitive response to stripe rust fungus infection. Plant J 52:420–434