TT-cross approximation for multidimensional arrays

Linear Algebra and Its Applications - Tập 432 Số 1 - Trang 70-88 - 2010
Ivan Oseledets1, Eugene E. Tyrtyshnikov1
1Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkin Street, 8, Moscow 119333, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Badeau, 2008, Fast multilinear singular value decomposition for structured tensors, SIAM J. Matrix Anal. Appl., 30, 1008, 10.1137/060655936

Bader, 2007, Efficient MATLAB computations with sparse and factored tensors, SIAM J. Sci. Comput., 30, 205, 10.1137/060676489

Bader, 2009, Tensor decompositions and applications, SIAM Rev., 51

Bebendorf, 2000, Approximation of boundary element matrices, Numer. Math., 86, 565, 10.1007/PL00005410

Beylkin, 2002, Numerical operator calculus in higher dimensions, Proc. Nat. Acad. Sci. USA, 99, 10246, 10.1073/pnas.112329799

Beylkin, 2005, Algorithms for numerical analysis in high dimensions, SIAM J. Sci. Comput., 26, 2133, 10.1137/040604959

Braess, 2005, Approximation of 1/x by exponential sums in [1,∞), IMA J. Numer. Anal., 25, 685, 10.1093/imanum/dri015

D. Braess, W. Hackbusch, On the efficient computation of high-dimensional integrals and the approximation by exponential sums, Preprint 3, MPI MIS, Leipzig, 2009.

Carroll, 1970, Analysis of individual differences in multidimensional scaling via n-way generalization of Eckart–Young decomposition, Psychometrika, 35, 283, 10.1007/BF02310791

Chinnamsetty, 2007, Optimal Kronecker tensor-product approximation in quantum chemistry, J. Chem. Phys., 127, 84, 10.1063/1.2761871

de Lathauwer, 2000, A multilinear singular value decomposition, SIAM J. Matrix Anal. Appl., 21, 1253, 10.1137/S0895479896305696

de Lathauwer, 2000, On best rank-1 and rank-(R1,R2,…,RN) approximation of high-order tensors, SIAM J. Matrix Anal. Appl., 21, 1324, 10.1137/S0895479898346995

M. Espig, Effiziente Bestapproximation mittels Summen von Elementartensoren in hohen Dimensionen, Ph.D. Thesis, Leipzig, 2007.

M. Espig, L. Grasedick, W. Hackbusch, Black box low tensor rank approximation using fibre-crosses, Preprint 60, MPI MIS, Leipzig, 2008.

Ford, 2003, Combining Kronecker product approximation with discrete wavelet transforms to solve dense function-related systems, SIAM J. Sci. Comput., 25, 961, 10.1137/S1064827503421689

Gantmacher, 1959

Gautschi, 1997

Gerstner, 1998, Numerical integration using sparse grids, Numer. Algor., 18, 209, 10.1023/A:1019129717644

Golub, 1996

Goreinov, 2008, On cross approximation of multi-index array, Doklady Math., 420, 1

S.A. Goreinov, I.V. Oseledets, D.V. Savostyanov, E.E. Tyrtyshnikov, N.L. Zamarashkin, How to find a good submatrix, Research Report 08-10, ICM HKBU, Kowloon Tong, Hong Kong, 2008.

Goreinov, 1995, Pseudo-skeleton approximations of matrices, Rep. Russian Acad. Sci., 342, 151

Goreinov, 1997, A theory of pseudo-skeleton approximations, Linear Algebra Appl., 261, 1, 10.1016/S0024-3795(96)00301-1

Goreinov, 2001, The maximal-volume concept in approximation by low-rank matrices, Contemporary Math., 208, 47, 10.1090/conm/280/4620

Grasedyck, 2004, Existence and computation of low Kronecker-rank approximations for large systems in tensor product structure, Computing, 72, 247, 10.1007/s00607-003-0037-z

Hackbush, 2005, Hierarchical Kronecker tensor-product approximations, J. Numer. Math., 13, 119, 10.1515/1569395054012767

Harshman, 1970, Foundations of the Parafac procedure: models and conditions for an explanatory multimodal factor analysis, UCLA Working Papers Phonet., 16, 1

Khoromskij, 2008, On tensor approximation of Green iterations for Kohn–Sham equations, Comput. Visual. Sci., 11, 259, 10.1007/s00791-008-0097-x

I.V. Oseledets, TT Toolbox 1.0: Fast multidimensional array operations in MATLAB, Preprint 2009-06, INM RAS, August 2009.

I.V. Oseledets, Compact matrix form of the d-dimensional tensor decomposition, Preprint 2009-01, INM RAS, March 2009.

Oseledets, 2009, On a new tensor decomposition, Doklady Math.

Oseledets, 2009, On the approximation of matrices with logarithmical number of parameters, Doklady Math., 10.1134/S1064562409050056

Oseledets, 2009, Tensors inside of matrices give logarithmic complexity, SIAM J. Matrix Anal. Appl.

Oseledets, 2008, Tucker dimensionality reduction of three-dimensional arrays in linear time, SIAM J. Matrix Anal. Appl., 30, 939, 10.1137/060655894

Oseledets, 2009, Breaking the curse of dimensionality, or how to use SVD in many dimensions, SIAM J. Sci. Comput., 10.1137/090748330

Oseledets, 2009, Recursive decomposition of multidimensional tensors, Doklady Math., 10.1134/S1064562409040036

Sobol, 1990, Quasi-Monte Carlo methods, Prog. Nucl. Energy, 24, 55, 10.1016/0149-1970(90)90022-W

Tucker, 1966, Some mathematical notes on three-mode factor analysis, Psychometrika, 31, 279, 10.1007/BF02289464

Tyrtyshnikov, 2000, Incomplete cross approximation in the mosaic-skeleton method, Computing, 64, 367, 10.1007/s006070070031

Tyrtyshnikov, 2003, Tensor approximations of matrices generated by asymptotically smooth functions, Sbornik: Math., 194, 941, 10.1070/SM2003v194n06ABEH000747