THz Time-Domain Spectroscopic Imaging of Human Articular Cartilage

Euna Jung1, Hongkyu Park1, Kiwon Moon1, Meehyun Lim1, Youngwoong Do1, Haewook Han1, Hyuck Jae Choi2, Byung-Hyun Min3,4, Sangin Kim5, Ikmo Park5, Hanjo Lim5
1National Research Lab for Nano-THz Photonics, Department of Electrical and Computer Engineering, POSTECH, Pohang, Korea
2Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan, Seoul, Korea
3Department of Orthopedic Surgery, College of Medicine, Ajou University, Suwon, Korea
4Department of Molecular Science and Technology, College of Engineering, Ajou University, Suwon, Korea
5Department of Electrical and Computer Engineering, College of Information Technology, Ajou University, Suwon, Korea

Tài liệu tham khảo

A. R. Poole, T. Kojima, T. Yasuda, F. Mwale, M. Kobayashi, and S. Laverty, “Composition and structure of articular cartilage,” Clin. Orthop. Relat. Res. 391 S, S26 − S33 (2001). A. R. Poole, I. Pidoux, A. Reiner, and L. Rosenberg, “An immunoelectron microscope study of the organization of proteoglycan monomer, link protein, and collagen in the matrix of articular cartilage,” J. Cell Biol. 93, 921–937 (1982). H. A. Alhadlaq and Y. Xia, “The structural adaptations in compressed articular cartilage by microscopic MRI (μMRI) T2 anisotropy,” Osteoarthritis Cartilage 12, 887–894 (2004). C. -B. James and T. L. Uhl, “A review of articular cartilage pathology and the use of glucosamine sulfate,” J. Athl. Train. 36, 413–419 (2001). Y. Pan, Z. Li, T. Xie and C. R. Chu, "Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage", J. Biomed. Opt. 8, 648 (2003). S. Saarakkala, . M. Laasanen, J. Jurvelin, and J. Töyräs, “ Quantitative ultrasound imaging defects degenerative changes in articular cartilage surface and subchondral bone,” Phys. Med. Biol. 51, 5333–5346 (2006). M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photon. 1, 97–105 (2007). E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D: Appl. Phys. 39, R301-R310 (2006). P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52, 2438–2447 (2004). D. Crawley, C. Longbottom, V. P. Wallace, B. Cole, D. Arnone, and M. Pepper, “Three-dimensional terahertz pulse imaging of dental tissue,” J. Biomed. Opt. 8, 303–307 (2003). V. P. Wallace, A. J. Fitzgerald, S. Shankar, N. Flanagan, R. Pye, J. Cluff, and D. D. Arnone, “Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo,” Br. J. Dermatol. 151, 424–432 (2004). A. J. Fitzgerald, V. P. Wallace, M. J. Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, “Terahertz pulsed imaging of human breast tumors,” Radiology 239, 533–540 (2006). W. -C. Kan, W. -S. Lee, W. -H. Cheung, V. P. Wallace, and E. Pickwell-MacPerson, “Terahertz pulsed imaging of knee cartilage,” Biomed. Opt. Express 1, 967–974 (2010). E. Jung, M. Lim, K. Moon, Y. Do, S. Lee, H. Han, H. Choi, K. Cho, and K. Kim, “Terahertz pulse imaging of micro-metastatic lymph nodes in early-stage cervical cancer patients,” J. Opt. Soc. Korea, 15, 155–160 (2011). S. W. Smye, J. M. Chamberlain, A. J. Fitzgerald and E. Berry, “The interaction between terahertz radiation and biological tissue,” Phys. Med. Biol. 46, R101−R112 (2001).