THE WATER-WATER CYCLE IN CHLOROPLASTS: Scavenging of Active Oxygens and Dissipation of Excess Photons

Annual Reviews - Tập 50 Số 1 - Trang 601-639 - 1999
Kozi Asada1
1Department of Biotechnology, Faculty of Engineering, Fukuyama University, Gakuen-cho 1, Fukuyama, 729-0292, Japan

Tóm tắt

▪ Abstract  Photoreduction of dioxygen in photosystem I (PSI) of chloroplasts generates superoxide radicals as the primary product. In intact chloroplasts, the superoxide and the hydrogen peroxide produced via the disproportionation of superoxide are so rapidly scavenged at the site of their generation that the active oxygens do not inactivate the PSI complex, the stromal enzymes, or the scavenging system itself. The overall reaction for scavenging of active oxygens is the photoreduction of dioxygen to water via superoxide and hydrogen peroxide in PSI by the electrons derived from water in PSII, and the water-water cycle is proposed for these sequences. An overview is given of the molecular mechanism of the water-water cycle and microcompartmentalization of the enzymes participating in it. Whenever the water-water cycle operates properly for scavenging of active oxygens in chloroplasts, it also effectively dissipates excess excitation energy under environmental stress. The dual functions of the water-water cycle for protection from photoinihibition are discussed.

Từ khóa


Tài liệu tham khảo

10.1073/pnas.89.15.7060

Amako K, 1994, Plant Cell Physiol., 35, 497

10.1023/A:1005946808488

10.1104/pp.107.2.645

10.1104/pp.117.2.565

10.1016/0005-2728(93)90134-2

10.1016/S0176-1617(97)80134-4

Asada K. 1981. Biological carboxylation. InOrganic and Bio-organic Chemistry of Carbon Dioxide, ed. S Inoue, N Yamazaki, pp. 185–251. Tokyo: Kodansha

10.1034/j.1399-3054.1992.850216.x

Asada K. 1992. Production and scavenging of active oxygen in chloroplasts. InMolecular Biology of Free Radical Scavenging Systems, ed. JG Scandalios, pp. 173–92. New York: Cold Spring Harbor Lab. Press

Asada K. 1994. Production and action of active oxygen species in photosynthetic tissues. See Ref.49A, pp. 77–104

Asada K. 1996. Radical production and scavenging in the chloroplasts. InPhotosynthesis and the Environments, ed. NR Baker, pp. 123–50. Dordrecht: Kluwer

Asada K. 1997. The role of ascorbate peroxidase and monodehydroascorbate reductase in H2O2scavenging in plants. See Ref.175, pp. 715–35

Asada K, 1984, Plant Cell Physiol., 25, 1169

Asada K, Endo T, Mano J, Miyake C. 1998. Molecular mechanism for relaxation of and protection from light stress. See Ref.174A, pp. 37–52

Asada K, 1993, Plant Cell Physiol., 34, 39

10.1111/j.1432-1033.1973.tb02677.x

Asada K, 1974, J. Biol. Chem., 249, 2175, 10.1016/S0021-9258(19)42815-9

10.1111/j.1751-1097.1978.tb07040.x

Asada K, 1992, Plant Cell Physiol., 31, 557

Asada K, Takahashi M. 1987. Production and scavenging of active oxygen in photosynthesis. InPhotoinhibition, ed. DJ Kyle, CB Osmond, CJ Arntzen, pp. 227–87. Amsterdam: Elsevier

Asada K, 1975, J. Biol. Chem., 250, 2801, 10.1016/S0021-9258(19)41561-5

10.1007/BF00032822

10.1046/j.1365-313X.1997.12010179.x

10.1104/pp.70.1.179

10.1016/0005-2728(94)90135-X

10.1104/pp.116.3.1029

10.1104/pp.112.1.265

10.1080/713608062

10.1104/pp.78.3.545

10.1104/pp.110.2.589

10.1104/pp.66.2.302

10.1093/oxfordjournals.pcp.a029186

10.1111/j.1365-3040.1997.00096.x

Chen G-X, 1989, Plant Cell Physiol., 30, 987

Chen G-X, 1989, J. Biol. Chem., 265, 2775, 10.1016/S0021-9258(19)39869-2

Chen G-X, 1992, Plant Cell Physiol., 33, 117

10.1021/bi00007a028

Chen G-X, 1992, Plant Cell Physiol., 33, 109

10.1007/BF00029815

10.1104/pp.115.3.1277

10.1105/tpc.10.5.741

10.1016/0031-9422(91)83698-K

10.1093/oxfordjournals.pcp.a029115

10.1034/j.1399-3054.1997.1000204.x

10.1104/pp.116.4.1209

10.1111/j.1432-1033.1993.tb17918.x

Foyer CH. 1997. Oxygen metabolism and electron transport in photosynthesis. See Ref.175, pp. 587–621

10.1016/S0031-9422(00)88779-8

Foyer CH, 1994, Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants.

10.1104/pp.116.2.571

10.1016/0005-2728(83)90047-6

10.1104/pp.70.4.927

10.1104/pp.73.4.1038

Gardner PR, 1992, J. Biol. Chem., 267, 8757, 10.1016/S0021-9258(19)50343-X

Getzoff ED, 1992, Science, 358, 347

10.1139/b94-034

10.1016/0005-2728(94)00183-6

10.1104/pp.108.1.411

10.1007/s004250050215

10.1007/BF00019047

10.1007/BF00390153

10.1093/oxfordjournals.pcp.a029055

10.1073/pnas.89.18.8716

10.1104/pp.104.3.873

10.1093/oxfordjournals.pcp.a029221

10.1007/BF00032294

10.1104/pp.114.4.1247

10.1007/BF02185440

10.1146/annurev.arplant.47.1.655

10.1016/0005-2728(83)90045-2

Hossain MA, 1984, Plant Cell Physiol., 25, 85

Hossain MA, 1984, Plant Cell Physiol., 25, 1285

Hossain MA, 1985, J. Biol. Chem., 250, 12920, 10.1016/S0021-9258(17)38813-0

10.1093/oxfordjournals.pcp.a029341

10.1016/0005-2728(78)90013-0

Inoue K, 1986, Plant Cell Physiol., 27, 961

10.1093/oxfordjournals.pcp.a029191

10.1007/s004250050260

10.1016/0014-5793(95)00539-L

10.1016/0014-5793(96)00332-8

10.1093/oxfordjournals.pcp.a029285

10.1042/bj3280795

10.1104/pp.116.1.173

10.1023/A:1005850207799

Ivanov BN, 1997, Biokhimiya, 62, 1082

10.1111/j.1365-3040.1991.tb01375.x

10.1093/oxfordjournals.pcp.a028991

10.1042/bj3260305

10.1104/pp.114.1.275

10.1016/0005-2728(76)90035-9

10.1007/BF00388364

Kanematsu K, 1990, Plant Cell Physiol., 31, 99

10.1002/9783527615971.ch10

10.1093/oxfordjournals.pcp.a029149

10.1046/j.1365-3040.1997.d01-30.x

10.1093/oxfordjournals.jbchem.a123407

10.1007/BF00384593

10.1074/jbc.270.46.27551

Kono Y, 1982, J. Biol. Chem., 257, 5751, 10.1016/S0021-9258(19)83842-5

10.1093/oxfordjournals.pcp.a078474

10.1038/384557a0

Krause GH. 1994. The role of oxygen in photoinhibition of photosynthesis. See Ref.49A, pp. 43–76

10.1093/oxfordjournals.pcp.a029190

10.1074/jbc.272.34.20998

10.1104/pp.114.4.1237

10.1104/pp.110.3.903

Larkum AWD, 1998, Photochem. Photobiol. Biol.

10.1016/S0981-9428(98)80046-6

10.1104/pp.109.3.847

10.1007/s003380050073

10.1104/pp.114.4.1273

10.1146/annurev.pp.45.060194.003221

10.1007/BF00262645

Mano J, 1999, Plant Cell Physiol., 40

Mano J, 1995, Plant Cell Physiol., 36, 1589

Mano J, 1999, Plant Cell Physiol., 40

10.1023/A:1005832022204

10.1016/S0014-5793(97)00862-4

10.1104/pp.64.4.656

10.1046/j.1365-3040.1997.d01-47.x

10.1016/0006-291X(69)90287-3

10.1007/978-94-009-0173-5

10.1074/jbc.272.36.22607

10.1016/0003-9861(51)90082-3

10.1016/0003-9861(52)90042-8

Mi H, 1995, Plant Cell Physiol., 36, 661

10.1104/pp.109.4.1295

Miyake C, 1992, Plant Cell Physiol., 33, 541

10.1093/oxfordjournals.pcp.a078628

10.1093/oxfordjournals.pcp.a028963

Miyake C, 1993, Plant Cell Physiol., 34, 881

Miyake C, 1991, Plant Cell Physiol., 32, 33

Miyake C, Sano S, Asada K. 1996. A new assay of ascorbate peroxidase using the coupled system with monodehydroascorbate radical reductase. InPlant Peroxidases, Biochemistry and Physiology, ed. C Obinger, U Burner, R Ebermann, C Openel, H Greppin, pp. 386–89. Geneva: Univ. Geneva Press

Miyake C, 1995, Plant Cell Physiol., 36, 743

10.1093/oxfordjournals.pcp.a029440

10.1016/S0014-5793(97)01074-0

10.1074/jbc.273.33.20935

Mullineaux PM, Creissen GP. 1997. Glutathione reductase: regulation and role in oxidative stress. See Ref.175, pp. 667–713

10.1046/j.1365-313X.1998.00052.x

Murthy SS, 1994, J. Biol. Chem., 269, 31129, 10.1016/S0021-9258(18)47399-1

10.1042/bj3160251

10.1093/oxfordjournals.pcp.a076128

Nakano Y, 1981, Plant Cell Physiol., 22, 867

10.1515/znc-1989-3-415

10.1104/pp.99.4.1354

10.1007/BF00029381

10.1146/annurev.arplant.49.1.249

10.1093/oxfordjournals.jbchem.a124697

Ogawa K, 1997, Plant Cell Physiol., 38, S35

10.1093/oxfordjournals.pcp.a029014

10.1093/oxfordjournals.pcp.a029096

Ogawa K, 1995, Plant Cell Physiol., 36, 565

10.1016/0014-5793(79)81260-0

10.1007/BF00620053

Ookawara T, 1992, J. Biol. Chem., 267, 18505, 10.1016/S0021-9258(19)36991-1

10.1016/0304-4173(81)90006-9

10.1093/jxb/46.special_issue.1351

10.1074/jbc.272.48.30009

10.1104/pp.115.4.1721

10.1007/s007750050023

10.1007/BF00018218

10.1021/bi00013a023

10.1021/bi00013a024

10.1104/pp.114.2.695

10.1105/tpc.6.1.65

10.1104/pp.58.3.336

10.1104/pp.61.6.915

10.1104/pp.65.4.723

10.1111/j.1399-3054.1988.tb09181.x

10.1046/j.1365-3040.1997.d01-78.x

10.1104/pp.94.3.1496

Salo DC, 1990, J. Biol. Chem., 265, 11919, 10.1016/S0021-9258(19)38488-1

10.1104/pp.105.1.287

Sano S, 1994, Plant Cell Physiol., 35, 425

10.1074/jbc.270.36.21354

10.1007/BF00197587

10.1093/oxfordjournals.pcp.a074493

10.1093/oxfordjournals.pcp.a074500

Satoh K, 1998, Stress Responses of Photosynthetic Organisms.

Scandalios JG. 1997. Molecular genetics of superoxide dismutases in plants. InOxidative Stress and the Molecular Biology of Antioxidant Defenses, ed. JG Scandalios, pp. 527–68. NY: Cold Spring Harbor Lab. Press

10.1007/BF01160394

Schreiber U. 1998. Chlorophyll fluorescence: new instruments for special applications. InProc. Int. Congr. Photosyn., 11th. Dordrecht: Kluwer. In press

Schreiber U, Hormann H, Asada K, Neubauer C. 1995. O2-dependent electron flow in intact spinach chloroplasts: properties and possible regulation of the Mehler-ascorbate peroxidase cycle. See Ref.118A, 2:813–18

10.1007/BF00033169

10.1104/pp.113.4.1177

10.1042/bj1860377

10.1073/pnas.95.16.9705

Simizu N, 1984, J. Biol. Chem., 259, 4414, 10.1016/S0021-9258(17)43062-6

10.1006/anbo.1996.0175

10.1093/oxfordjournals.pcp.a078827

10.1093/oxfordjournals.pcp.a028938

10.1007/BF02507158

10.1023/A:1005852330671

10.1016/0014-5793(95)00254-7

10.1126/science.1355616

10.1515/znc-1993-9-1014

10.1007/BF01089035

Süss KH, 1995, Plant Physiol., 107, 1387, 10.1104/pp.107.4.1387

Takahashi M, 1982, Plant Cell Physiol., 25, 1457

10.1016/0003-9861(83)90325-9

10.1016/0003-9861(88)90080-X

Takahashi Y, 1984, Plant Cell Physiol., 25, 785

Takeba G, Kozaki A. 1998. Photorespiration is an essential mechanism for the protection of C3plants from photooxidation. See Ref.174A, pp. 37–52

10.1093/oxfordjournals.pcp.a078852

10.1042/bj3160685

Tanaka K, 1982, Plant Cell Physiol., 23, 1009, 10.1093/oxfordjournals.pcp.a076473

10.1073/pnas.95.14.7872

10.1007/BF00192544

10.1034/j.1399-3054.1998.1030301.x

10.1104/pp.116.4.1593

10.1104/pp.116.2.755

10.1007/BF00195717

10.1016/0014-5793(94)00947-3

Uchida K, 1994, J. Biol. Chem., 269, 2405, 10.1016/S0021-9258(17)41960-0

10.1104/pp.112.4.1703

10.1093/oxfordjournals.pcp.a029321

10.1006/bbrc.1997.7946

10.1073/pnas.95.16.9699

10.1016/0959-440X(92)90230-5

Wells WW, 1990, J. Biol. Chem., 265, 15361, 10.1016/S0021-9258(18)55401-6

Westphal S, 1992, Z. Naturforsch., 47, 1342

10.1038/30728

10.1093/emboj/16.16.4806

10.1007/BF00032579

10.1093/oxfordjournals.pcp.a028961

10.1093/oxfordjournals.pcp.a078862

Yamasaki H, Heshiki R, Yamasu T, Sakihama Y, Ikehara N. 1995. Physiological significance of the ascorbate regenerating system for the high-light tolerance of chloroplasts. See Ref.118A, 4:291–94

Zium-Hanck U, 1980, Biochim. Biophys. Acta, 591, 166