THB-splines: An effective mathematical technology for adaptive refinement in geometric design and isogeometric analysis

Carlotta Giannelli1, Bert Jüttler2, Stefan K. Kleiss2, Angelos Mantzaflaris3,4,5, Bernd Simeon6,7, Jaka Ṡ́peh2
1DSI - Dipartimento di Sistemi e Informatica (Engineering Division Via di Santa Marta, 3 50139 Firenze - Italy - Italie)
2Institute of Applied Geometry [Linz] (Johannes Kepler University Faculty of Natural Sciences and Engineering Institute of Applied Geometry Altenberger Str. 69 A-4040 Linz - Autriche)
3AROMATH - AlgebRe, geOmetrie, Modelisation et AlgoriTHmes (2004 route des Lucioles BP 93 06902 Sophia Antipolis cedex - France)
4COMUE UCA - COMUE Université Côte d'Azur (2015-2019) (Parc Valrose, 28, avenue Valrose 06108 Nice Cedex 2 - France)
5RICAM - Johann Radon Institute for Computational and Applied Mathematics (Austrian Academy of Sciences Altenbergerstraße 69 A-4040 Linz, Austria - Autriche)
6Felix Klein Centre for Mathematics (Felix-Klein-Zentrum für Mathematik e.V. c/o Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM Fraunhofer-Platz 1 67663 Kaiserslautern - Allemagne)
7TU Kaiserslautern - Technical University of Kaiserslautern (PO Box 3 049 67.653 Kaiserslautern - Allemagne)

Tóm tắt

Từ khóa


Tài liệu tham khảo

Cottrell, 2009

Hughes, 2005, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135, 10.1016/j.cma.2004.10.008

Sederberg, 2004, T-spline simplification and local refinement, ACM Trans. Graphics, 23, 276, 10.1145/1015706.1015715

Sederberg, 2003, T-splines and T-NURCCS, ACM Trans. Graphics, 22, 477, 10.1145/882262.882295

Bazilevs, 2010, Isogeometric analysis using T-splines, Comput. Methods Appl. Mech. Engrg., 199, 229, 10.1016/j.cma.2009.02.036

Dörfel, 2010, Adaptive isogeometric analysis by local h-refinement with T-splines, Comput. Methods Appl. Mech. Engrg., 199, 264, 10.1016/j.cma.2008.07.012

Li, 2012, On linear independence of T–spline blending functions, Comput. Aided Geom. Design, 29, 63, 10.1016/j.cagd.2011.08.005

Beirão~da Veiga, 2012, Analysis-suitable T-splines are dual-compatible, Comput. Methods Appl. Mech. Engrg., 249–252, 42, 10.1016/j.cma.2012.02.025

Beirão~da Veiga, 2013, Analysis-suitable T-splines of arbitrary degree: definition, linear independence and approximation properties, Math. Models Methods Appl. Sci., 23, 1979, 10.1142/S0218202513500231

Morgenstern, 2015, Analysis-suitable adaptive T-mesh refinement with linear complexity, Comput. Aided Geom. Design, 34, 50, 10.1016/j.cagd.2015.02.003

Forsey, 1988, Hierarchical B-spline refinement, Comput. Graphics, 22, 205, 10.1145/378456.378512

Greiner, 1997, Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines, 163

Kraft, 1997, Adaptive and linearly independent multilevel B–splines, 209

Evans, 2015, Hierarchical T-splines: Analysis-suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 284, 1, 10.1016/j.cma.2014.05.019

Schillinger, 2012, An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces, Comput. Methods Appl. Mech. Engrg., 249–252, 116, 10.1016/j.cma.2012.03.017

Vuong, 2011, A hierarchical approach to adaptive local refinement in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 200, 3554, 10.1016/j.cma.2011.09.004

Giannelli, 2012, THB-splines: The truncated basis for hierarchical splines, Comput. Aided Geom. Design, 29, 485, 10.1016/j.cagd.2012.03.025

Giannelli, 2013, Bases and dimensions of bivariate hierarchical tensor–product splines, J. Comput. Appl. Math., 239, 162, 10.1016/j.cam.2012.09.031

Speleers, 2015, Effortless quasi-interpolation in hierarchical spaces, Numer. Math.

Kiss, 2014, Adaptive CAD model (re–)construction with THB–splines, Graph. Models, 76, 273, 10.1016/j.gmod.2014.03.017

Wei, 2015, Truncated hierarchical Catmull–Clark subdivision with local refinement, Comput. Methods Appl. Mech. Engrg., 291, 1, 10.1016/j.cma.2015.03.019

Zore, 2014, Adaptively refined multilevel spline spaces from generating systems, Comput. Aided Geom. Design, 31, 545, 10.1016/j.cagd.2014.04.003

Zore, 2014

Li, 2007, Surface modeling with polynomial splines over hierarchical T-meshes, Visual Comput., 23, 1027, 10.1007/s00371-007-0170-3

Deng, 2008, Polynomial splines over hierarchical T-meshes, Graph. Models, 70, 76, 10.1016/j.gmod.2008.03.001

Wu, 2012, Hierarchical bases of spline spaces with highest order smoothness over hierarchical T–subdivisions, Comput. Aided Geom. Design, 29, 499, 10.1016/j.cagd.2012.03.024

Nguyen-Thanh, 2011, Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids, Comput. Methods Appl. Mech. Engrg., 200, 1892, 10.1016/j.cma.2011.01.018

Wang, 2011, Adaptive isogeometric analysis using rational PHT-splines, Computer-Aided Design, 43, 1438, 10.1016/j.cad.2011.08.026

Dokken, 2013, Polynomial splines over locally refined box–partitions, Comput. Aided Geom. Design, 30, 331, 10.1016/j.cagd.2012.12.005

Bressan, 2013, Some properties of LR-splines, Comput. Aided Geom. Design, 30, 778, 10.1016/j.cagd.2013.06.004

Bressan, 2015, A hierarchical construction of LR meshes in 2D, Comput. Aided Geom. Design, 37, 9, 10.1016/j.cagd.2015.06.002

Johannessen, 2014, Isogeometric analysis using LR B-splines, Comput. Methods Appl. Mech. Engrg., 269, 471, 10.1016/j.cma.2013.09.014

Johannessen, 2015, On the similarities and differences between classical hierarchical, truncated hierarchical and LR B-splines, Comput. Methods Appl. Mech. Engrg., 291, 64, 10.1016/j.cma.2015.02.031

Giannelli, 2014, Strongly stable bases for adaptively refined multilevel spline spaces, Adv. Comp. Math., 40, 459, 10.1007/s10444-013-9315-2

Piegl, 1997

Kiss, 2014, Algorithms and data structures for truncated hierarchical B–splines, vol. 8177, 304

Wang, 2005, Conversion between T-splines and hierarchical B-splines, 8

Mokriš, 2014, On the completeness of hierarchical tensor-product B-splines, J. Comput. Appl. Math., 271, 53, 10.1016/j.cam.2014.04.001

Skytt, 2015, Locally refined spline surfaces for representation of terrain data, Comput. Graphics, 49, 58, 10.1016/j.cag.2015.03.006

Saad, 2003

John, 2000, A numerical study of a posteriori error estimators for convection–diffusion equations, Comput. Methods Appl. Mech. Engrg., 190, 757, 10.1016/S0045-7825(99)00440-5

Cottrell, 2007, Studies of refinement and continuity in isogeometric structural analysis, Comput. Methods Appl. Mech. Engrg., 196, 4160, 10.1016/j.cma.2007.04.007

Pironneau, 1989

Falini, 2015, Planar domain parameterization with THB-splines, Comput. Aided Geom. Design, 35–36, 95, 10.1016/j.cagd.2015.03.014

Jüttler, 2014, Geometry + simulation modules: Implementing isogeometric analysis, PAMM, 14, 961, 10.1002/pamm.201410461

Buchegger, 2015, Adaptively refined multi-patch B-splines with enhanced smothness, Appl. Math. Comput.

Buffa, 2016, Adaptive isogeometric methods with hierarchical splines: error estimator and convergence, Math. Models Methods Appl. Sci., 26, 1, 10.1142/S0218202516500019

Buffa, 2013, BPX-preconditioning for isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 265, 63, 10.1016/j.cma.2013.05.014

Hofreither, 2015