TGF-β/Smad signaling in renal fibrosis

Xiao‐Ming Meng1, Patrick Ming‐Kuen Tang2,3, Jun Li1, Hui‐Yao Lan2,3,4
1School of Pharmacy, Anhui Medical University, Hefei, China
2Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
3Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
4Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Afrakhte, 1998, Induction of inhibitory Smad6 and Smad7 mRNA by TGF-beta family members, Biochem. Biophys. Res. Commun, 249, 505, 10.1006/bbrc.1998.9170

Ai, 2014, GQ5 hinders renal fibrosis in obstructive nephropathy by selectively inhibiting TGF-beta-induced Smad3 phosphorylation, J. Am. Soc. Nephrol, 10.1681/ASN.2014040363

Allison, 2013, Fibrosis: the source of myofibroblasts in kidney fibrosis, Nat. Rev. Nephrol, 9, 494, 10.1038/nrneph.2013.141

Attisano, 2002, Signal transduction by the TGF-beta superfamily, Science, 296, 1646, 10.1126/science.1071809

Border, 1998, Evidence that TGF-beta should be a therapeutic target in diabetic nephropathy, Kidney Int, 54, 1390, 10.1046/j.1523-1755.1998.00127.x

Bottinger, 2002, TGF-beta signaling in renal disease, J. Am. Soc. Nephrol, 13, 2600, 10.1097/01.ASN.0000033611.79556.AE

Chau, 2012, MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways, Sci. Transl. Med, 4, 121ra118, 10.1126/scitranslmed.3003205

Chen, 2011, The protective role of Smad7 in diabetic kidney disease: mechanism and therapeutic potential, Diabetes, 60, 590, 10.2337/db10-0403

Chen, 2014, MicroRNA-29b inhibits diabetic nephropathy in db/db mice, Mol. Ther, 22, 842, 10.1038/mt.2013.235

Chen, 1999, Stimulation of type I collagen transcription in human skin fibroblasts by TGF-beta: involvement of Smad 3, J. Invest. Dermatol, 112, 49, 10.1046/j.1523-1747.1999.00477.x

Cho, 2007, Pirfenidone slows renal function decline in patients with focal segmental glomerulosclerosis, Clin. J. Am. Soc. Nephrol, 2, 906, 10.2215/CJN.01050207

Choi, 2012, TGF-beta signaling via TAK1 pathway: role in kidney fibrosis, Semin. Nephrol, 32, 244, 10.1016/j.semnephrol.2012.04.003

Chung, 2013a, Smad7 suppresses renal fibrosis via altering expression of TGF-beta/Smad3-regulated microRNAs, Mol. Ther, 21, 388, 10.1038/mt.2012.251

Chung, 2010a, miR-192 mediates TGF-beta/Smad3-driven renal fibrosis, J. Am. Soc. Nephrol, 21, 1317, 10.1681/ASN.2010020134

Chung, 2009, Disruption of the Smad7 gene promotes renal fibrosis and inflammation in unilateral ureteral obstruction (UUO) in mice, Nephrol. Dial. Transplant, 24, 1443, 10.1093/ndt/gfn699

Chung, 2013b, MicroRNA and nephropathy: emerging concepts, Int. J. Nephrol. Renovasc. Dis, 6, 169, 10.2147/IJNRD.S37885

Chung, 2010b, Advanced glycation end-products induce tubular CTGF via TGF-beta-independent Smad3 signaling, J. Am. Soc. Nephrol, 21, 249, 10.1681/ASN.2009010018

Dennler, 1998, Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene, EMBO J, 17, 3091, 10.1093/emboj/17.11.3091

Derynck, 2003, Smad-dependent and Smad-independent pathways in TGF-beta family signalling, Nature, 425, 577, 10.1038/nature02006

Doi, 2011, Klotho inhibits transforming growth factor-beta1 (TGF-beta1) signaling and suppresses renal fibrosis and cancer metastasis in mice, J. Biol. Chem, 286, 8655, 10.1074/jbc.M110.174037

Du, 2010, High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells, FEBS Lett, 584, 811, 10.1016/j.febslet.2009.12.053

Ebisawa, 2001, Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation, J. Biol. Chem, 276, 12477, 10.1074/jbc.C100008200

Eddy, 2006, Chronic kidney disease progression, J. Am. Soc. Nephrol, 17, 2964, 10.1681/ASN.2006070704

Evans, 2003, TGF-beta1-mediated fibroblast-myofibroblast terminal differentiation-the role of Smad proteins, Exp. Cell Res, 282, 90, 10.1016/S0014-4827(02)00015-0

Fan, 1999, Transforming growth factor-beta regulates tubular epithelial-myofibroblast transdifferentiation in vitro, Kidney Int, 56, 1455, 10.1046/j.1523-1755.1999.00656.x

Fujimoto, 2003, Mice lacking Smad3 are protected against streptozotocin-induced diabetic glomerulopathy, Biochem. Biophys. Res. Commun, 305, 1002, 10.1016/S0006-291X(03)00885-4

Fukasawa, 2004, Down-regulation of Smad7 expression by ubiquitin-dependent degradation contributes to renal fibrosis in obstructive nephropathy in mice, Proc. Natl. Acad. Sci. U.S.A, 101, 8687, 10.1073/pnas.0400035101

Godwin, 2010, Identification of a microRNA signature of renal ischemia reperfusion injury, Proc. Natl. Acad. Sci. U.S.A, 107, 14339, 10.1073/pnas.0912701107

Hong, 2007, Differentiation of human circulating fibrocytes as mediated by transforming growth factor-beta and peroxisome proliferator-activated receptor gamma, J. Biol. Chem, 282, 22910, 10.1074/jbc.M703597200

Hou, 2005, Ultrasound-microbubble-mediated gene transfer of inducible Smad7 blocks transforming growth factor-beta signaling and fibrosis in rat remnant kidney, Am. J. Pathol, 166, 761, 10.1016/S0002-9440(10)62297-3

Howe, 2012, The miR-200 and miR-221/222 microRNA families: opposing effects on epithelial identity, J. Mammary Gland Biol. Neoplasia, 17, 65, 10.1007/s10911-012-9244-6

Hruska, 2000, Osteogenic protein-1 prevents renal fibrogenesis associated with ureteral obstruction, Am. J. Physiol. Renal Physiol, 279, F130, 10.1152/ajprenal.2000.279.1.F130

Huang, 2008a, Mice overexpressing latent TGF-beta1 are protected against renal fibrosis in obstructive kidney disease, Am. J. Physiol. Renal Physiol, 295, F118, 10.1152/ajprenal.00021.2008

Huang, 2008b, Latent TGF-beta1 protects against crescentic glomerulonephritis, J. Am. Soc. Nephrol, 19, 233, 10.1681/ASN.2007040484

Ka, 2007, Smad7 gene therapy ameliorates an autoimmune crescentic glomerulonephritis in mice, J. Am. Soc. Nephrol, 18, 1777, 10.1681/ASN.2006080901

Ka, 2012, Kidney-targeting Smad7 gene transfer inhibits renal TGF-beta/MAD homologue (SMAD) and nuclear factor kappaB (NF-kappaB) signalling pathways, and improves diabetic nephropathy in mice, Diabetologia, 55, 509, 10.1007/s00125-011-2364-5

Kantharidis, 2011, Diabetes complications: the microRNA perspective, Diabetes, 60, 1832, 10.2337/db11-0082

Kato, 2011, A microRNA circuit mediates transforming growth factor-beta1 autoregulation in renal glomerular mesangial cells, Kidney Int, 80, 358, 10.1038/ki.2011.43

Kato, 2007, MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors, Proc. Natl. Acad. Sci. U.S.A, 104, 3432, 10.1073/pnas.0611192104

Kavsak, 2000, Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation, Mol. Cell, 6, 1365, 10.1016/S1097-2765(00)00134-9

Kim, 2005, The endogenous ratio of Smad2 and Smad3 influences the cytostatic function of Smad3, Mol. Biol. Cell, 16, 4672, 10.1091/mbc.E05-01-0054

Kopp, 1996, Transgenic mice with increased plasma levels of TGF-beta 1 develop progressive renal disease, Lab. Invest, 74, 991

Korpal, 2008, The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2, J. Biol. Chem, 283, 14910, 10.1074/jbc.C800074200

Kriegel, 2012, MiR-382 targeting of kallikrein 5 contributes to renal inner medullary interstitial fibrosis, Physiol. Genomics, 44, 259, 10.1152/physiolgenomics.00173.2011

Krupa, 2010, Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy, J. Am. Soc. Nephrol, 21, 438, 10.1681/ASN.2009050530

Lan, 2012, TGF-beta/Smad signaling in kidney disease, Semin. Nephrol, 32, 236, 10.1016/j.semnephrol.2012.04.002

Lan, 2003, Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound-microbubble system in rat UUO model, J. Am. Soc. Nephrol, 14, 1535, 10.1097/01.ASN.0000067632.04658.B8

LeBleu, 2013, Origin and function of myofibroblasts in kidney fibrosis, Nat. Med, 19, 1047, 10.1038/nm.3218

Li, 2003, Role of TGF-beta signaling in extracellular matrix production under high glucose conditions, Kidney Int, 63, 2010, 10.1046/j.1523-1755.2003.00016.x

Li, 2004, Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: implications for diabetic renal and vascular disease, FASEB J, 18, 176, 10.1096/fj.02-1117fje

Li, 2010, Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy, Diabetes, 59, 2612, 10.2337/db09-1631

Li, 2009, Inhibition of integrin-linked kinase attenuates renal interstitial fibrosis, J. Am. Soc. Nephrol, 20, 1907, 10.1681/ASN.2008090930

Liu, 2008, Arkadia regulates TGF-beta signaling during renal tubular epithelial to mesenchymal cell transition, Kidney Int, 73, 588, 10.1038/sj.ki.5002713

Liu, 2013, Disruption of Smad7 promotes ANG II-mediated renal inflammation and fibrosis via Sp1-TGF-beta/Smad3-NF.kappaB-dependent mechanisms in mice, PLoS ONE, 8, e53573, 10.1371/journal.pone.0053573

Liu, 2014, Smad7 inhibits AngII-mediated hypertensive nephropathy in a mouse model of hypertension, Clin. Sci, 127, 195, 10.1042/CS20130706

Liu, 2010, New insights into epithelial-mesenchymal transition in kidney fibrosis, J. Am. Soc. Nephrol, 21, 212, 10.1681/ASN.2008121226

Liu, 2010, Renal medullary microRNAs in Dahl salt-sensitive rats: miR-29b regulates several collagens and related genes, Hypertension, 55, 974, 10.1161/HYPERTENSIONAHA.109.144428

Liu, 2012, Smad3 mediates ANG II-induced hypertensive kidney disease in mice, Am. J. Physiol. Renal Physiol, 302, F986, 10.1152/ajprenal.00595.2011

Loeffler, 2014, Transforming growth factor-beta and the progression of renal disease, Nephrol. Dial. Transplant, 29(Suppl. 1), i37, 10.1093/ndt/gft267

Lopez-Hernandez, 2012, Role of TGF-beta in chronic kidney disease: an integration of tubular, glomerular and vascular effects, Cell Tissue Res, 347, 141, 10.1007/s00441-011-1275-6

Luo, 2010, Bone morphogenetic protein-7 inhibits proximal tubular epithelial cell Smad3 signaling via increased SnoN expression, Am. J. Pathol, 176, 1139, 10.2353/ajpath.2010.090459

Lyons, 1990, Mechanism of activation of latent recombinant transforming growth factor beta 1 by plasmin, J. Cell Biol, 110, 1361, 10.1083/jcb.110.4.1361

Massague, 2000, Transcriptional control by the TGF-beta/Smad signaling system, EMBO J, 19, 1745, 10.1093/emboj/19.8.1745

Meng, 2013, Role of the TGF-beta/BMP-7/Smad pathways in renal diseases, Clin. Sci, 124, 243, 10.1042/CS20120252

Meng, 2010, Smad2 protects against TGF-beta/Smad3-mediated renal fibrosis, J. Am. Soc. Nephrol, 21, 1477, 10.1681/ASN.2009121244

Meng, 2012a, Diverse roles of TGF-beta receptor II in renal fibrosis and inflammation in vivo and in vitro, J. Pathol, 227, 175, 10.1002/path.3976

Meng, 2012b, Disruption of Smad4 impairs TGF-beta/Smad3 and Smad7 transcriptional regulation during renal inflammation and fibrosis in vivo and in vitro, Kidney Int, 81, 266, 10.1038/ki.2011.327

Meng, 2014, Inflammatory processes in renal fibrosis, Nat. Rev. Nephrol, 10, 493, 10.1038/nrneph.2014.114

Midgley, 2013, Transforming growth factor-beta1 (TGF-beta1)-stimulated fibroblast to myofibroblast differentiation is mediated by hyaluronan (HA)-facilitated epidermal growth factor receptor (EGFR) and CD44 co-localization in lipid rafts, J. Biol. Chem, 288, 14824, 10.1074/jbc.M113.451336

Moon, 2006, IN-1130, a novel transforming growth factor-beta type I receptor kinase (ALK5) inhibitor, suppresses renal fibrosis in obstructive nephropathy, Kidney Int, 70, 1234, 10.1038/sj.ki.5001775

Munger, 1999, The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis, Cell, 96, 319, 10.1016/S0092-8674(00)80545-0

Murakami, 1997, Urinary transforming growth factor-beta in patients with glomerular diseases, Pediatr. Nephrol, 11, 334, 10.1007/s004670050289

Ng, 2009, Pentoxifylline inhibits transforming growth factor-beta signaling and renal fibrosis in experimental crescentic glomerulonephritis in rats, Am. J. Nephrol, 29, 43, 10.1159/000150600

Nikolic-Paterson, 2014, Macrophages promote renal fibrosis through direct and indirect mechanisms, Kidney Int. Suppl, 4, 34, 10.1038/kisup.2014.7

Oba, 2010, miR-200b precursor can ameliorate renal tubulointerstitial fibrosis, PLoS ONE, 5, e13614, 10.1371/journal.pone.0013614

Petersen, 2008, Oral administration of GW788388, an inhibitor of TGF-beta type I and II receptor kinases, decreases renal fibrosis, Kidney Int, 73, 705, 10.1038/sj.ki.5002717

Phanish, 2006, The differential role of Smad2 and Smad3 in the regulation of pro-fibrotic TGFbeta1 responses in human proximal-tubule epithelial cells, Biochem. J, 393, 601, 10.1042/BJ20051106

Piek, 2001, Functional characterization of transforming growth factor beta signaling in Smad2- and Smad3-deficient fibroblasts, J. Biol. Chem, 276, 19945, 10.1074/jbc.M102382200

Putta, 2012, Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy, J. Am. Soc. Nephrol, 23, 458, 10.1681/ASN.2011050485

Qin, 2011, TGF-beta/Smad3 signaling promotes renal fibrosis by inhibiting miR-29, J. Am. Soc. Nephrol, 22, 1462, 10.1681/ASN.2010121308

Samarakoon, 2012, TGF-beta1 –> SMAD/p53/USF2 –> PAI-1 transcriptional axis in ureteral obstruction-induced renal fibrosis, Cell Tissue Res, 347, 117, 10.1007/s00441-011-1181-y

Sanderson, 1995, Hepatic expression of mature transforming growth factor beta 1 in transgenic mice results in multiple tissue lesions, Proc. Natl. Acad. Sci. U.S.A, 92, 2572, 10.1073/pnas.92.7.2572

Sato, 2003, Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction, J. Clin. Invest, 112, 1486, 10.1172/JCI200319270

Sharma, 2011, Pirfenidone for diabetic nephropathy, J. Am. Soc. Nephrol, 22, 1144, 10.1681/ASN.2010101049

Shen, 2013, Inhibition of TGF-beta1-receptor posttranslational core fucosylation attenuates rat renal interstitial fibrosis, Kidney Int, 84, 64, 10.1038/ki.2013.82

Shi, 2003, Mechanisms of TGF-beta signaling from cell membrane to the nucleus, Cell, 113, 685, 10.1016/S0092-8674(03)00432-X

Sugimoto, 2007, Renal fibrosis and glomerulosclerosis in a new mouse model of diabetic nephropathy and its regression by bone morphogenic protein-7 and advanced glycation end product inhibitors, Diabetes, 56, 1825, 10.2337/db06-1226

Tampe, 2014, Potential approaches to reverse or repair renal fibrosis, Nat. Rev. Nephrol, 10, 226, 10.1038/nrneph.2014.14

Trachtman, 2011, A phase 1, single-dose study of fresolimumab, an anti-TGF-beta antibody, in treatment-resistant primary focal segmental glomerulosclerosis, Kidney Int, 79, 1236, 10.1038/ki.2011.33

Tsakas, 2006, Accurate measurement and clinical significance of urinary transforming growth factor-beta1, Am. J. Nephrol, 26, 186, 10.1159/000093178

Tsuchida, 2003, Role of Smad4 on TGF-beta-induced extracellular matrix stimulation in mesangial cells, Kidney Int, 63, 2000, 10.1046/j.1523-1755.2003.00009.x

van Rooij, 2008, Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis, Proc. Natl. Acad. Sci. U.S.A, 105, 13027, 10.1073/pnas.0805038105

Vindevoghel, 1998, SMAD3/4-dependent transcriptional activation of the human type VII collagen gene (COL7A1) promoter by transforming growth factor beta, Proc. Natl. Acad. Sci. U.S.A, 95, 14769, 10.1073/pnas.95.25.14769

Wada, 2007, Fibrocytes: a new insight into kidney fibrosis, Kidney Int, 72, 269, 10.1038/sj.ki.5002325

Wang, 2010, E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta, Diabetes, 59, 1794, 10.2337/db09-1736

Wang, 2014, Transforming growth factor-beta1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b, Kidney Int, 85, 352, 10.1038/ki.2013.372

Wang, 2011, miR-200a Prevents renal fibrogenesis through repression of TGF-beta2 expression, Diabetes, 60, 280, 10.2337/db10-0892

Wang, 2013, Effect of miR-21 on renal fibrosis by regulating MMP-9 and TIMP1 in kk-ay diabetic nephropathy mice, Cell Biochem. Biophys, 67, 537, 10.1007/s12013-013-9539-2

Wang, 2006a, Renal bone morphogenetic protein-7 protects against diabetic nephropathy, J. Am. Soc. Nephrol, 17, 2504, 10.1681/ASN.2006030278

Wang, 2006b, Essential role of Smad3 in angiotensin II-induced vascular fibrosis, Circ. Res, 98, 1032, 10.1161/01.RES.0000218782.52610.dc

Wei, 2013, Kindlin-2 mediates activation of TGF-beta/Smad signaling and renal fibrosis, J. Am. Soc. Nephrol, 24, 1387, 10.1681/ASN.2012101041

Wrana, 1994, Mechanism of activation of the TGF-beta receptor, Nature, 370, 341, 10.1038/370341a0

Wu, 2013, Transforming growth factor beta-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis, Am. J. Pathol, 182, 118, 10.1016/j.ajpath.2012.09.009

Wynn, 2012, Mechanisms of fibrosis: therapeutic translation for fibrotic disease, Nat. Med, 18, 1028, 10.1038/nm.2807

Xavier, 2014, Curtailing endothelial TGF-beta signaling is sufficient to reduce endothelial-mesenchymal transition and fibrosis in CKD, J. Am. Soc. Nephrol, 10.1681/ASN.2013101137

Xiao, 2012, miR-29 inhibits bleomycin-induced pulmonary fibrosis in mice, Mol. Ther, 20, 1251, 10.1038/mt.2012.36

Xiong, 2012, The miR-200 family regulates TGF-beta1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression, Am. J. Physiol. Renal Physiol, 302, F369, 10.1152/ajprenal.00268.2011

Xu, 2012, Delayed ischemic preconditioning contributes to renal protection by upregulation of miR-21, Kidney Int, 82, 1167, 10.1038/ki.2012.241

Yamamoto, 1996, Expression of transforming growth factor-beta isoforms in human glomerular diseases, Kidney Int, 49, 461, 10.1038/ki.1996.65

Yang, 2009, Angiotensin II induces connective tissue growth factor and collagen I expression via transforming growth factor-beta-dependent and -independent Smad pathways: the role of Smad3, Hypertension, 54, 877, 10.1161/HYPERTENSIONAHA.109.136531

Yang, 2010, Essential role for Smad3 in angiotensin II-induced tubular epithelial-mesenchymal transition, J. Pathol, 221, 390, 10.1002/path.2721

Yang, 2003a, Downregulation of Smad transcriptional corepressors SnoN and Ski in the fibrotic kidney: an amplification mechanism for TGF-beta1 signaling, J. Am. Soc. Nephrol, 14, 3167, 10.1097/01.ASN.0000099373.33259.B2

Yang, 2003b, Hierarchical model of gene regulation by transforming growth factor beta, Proc. Natl. Acad. Sci. U.S.A, 100, 10269, 10.1073/pnas.1834070100

Yuan, 2001, Transforming growth factor-beta repression of matrix metalloproteinase-1 in dermal fibroblasts involves Smad3, J. Biol. Chem, 276, 38502, 10.1074/jbc.M107081200

Zeisberg, 2008, Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition, J. Am. Soc. Nephrol, 19, 2282, 10.1681/ASN.2008050513

Zeisberg, 2003, BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury, Nat. Med, 9, 964, 10.1038/nm888

Zhong, 2013, miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes, Diabetologia, 56, 663, 10.1007/s00125-012-2804-x

Zhong, 2011, Smad3-mediated upregulation of miR-21 promotes renal fibrosis, J. Am. Soc. Nephrol, 22, 1668, 10.1681/ASN.2010111168

Zhou, 2010, Mechanism of chronic aristolochic acid nephropathy: role of Smad3, Am. J. Physiol. Renal Physiol, 298, F1006, 10.1152/ajprenal.00675.2009

Zhu, 1999, Smad7 differentially regulates transforming growth factor beta-mediated signaling pathways, J. Biol. Chem, 274, 32258, 10.1074/jbc.274.45.32258