TGFβ/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells

Development (Cambridge) - Tập 132 Số 6 - Trang 1273-1282 - 2005
Daylon James1, Ariel J. Levine1, Daniel Besser1, Ali Hemmati‐Brivanlou1
1Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA

Tóm tắt

Human embryonic stem cells (hESCs) self-renew indefinitely and give rise to derivatives of all three primary germ layers, yet little is known about the signaling cascades that govern their pluripotent character. Because it plays a prominent role in the early cell fate decisions of embryonic development, we have examined the role of TGFβ superfamily signaling in hESCs. We found that, in undifferentiated cells, the TGFβ/activin/nodal branch is activated (through the signal transducer SMAD2/3) while the BMP/GDF branch(SMAD1/5) is only active in isolated mitotic cells. Upon early differentiation, SMAD2/3 signaling is decreased while SMAD1/5 signaling is activated. We next tested the functional role of TGFβ/activin/nodal signaling in hESCs and found that it is required for the maintenance of markers of the undifferentiated state. We extend these findings to show that SMAD2/3 activation is required downstream of WNT signaling, which we have previously shown to be sufficient to maintain the undifferentiated state of hESCs. Strikingly, we show that in ex vivo mouse blastocyst cultures, SMAD2/3 signaling is also required to maintain the inner cell mass (from which stem cells are derived). These data reveal a crucial role for TGFβ signaling in the earliest stages of cell fate determination and demonstrate an interconnection between TGFβ and WNT signaling in these contexts.

Từ khóa


Tài liệu tham khảo

Albano, R. M., Groome, N. and Smith, J. (1993). Activins are expressed in preimplantation mouse embryos and in ES and EC cells and are regulated on their differentiation. Development117,711-723.

Amit, M., Shariki, C., Margulets, V. and Itskovitz-Eldor, J.(2004). Feeder layer- and serum-free culture of human embryonic stem cells. Biol. Reprod.70,837-845.

Besser, D. (2004). Expression of Nodal,Lefty-A, and Lefty-B in undifferentiated human embryonic stem cells requires activation of Smad2/3. J. Biol. Chem.279,45076-45084.

Betts, D., Bordignon, V., Hill, J., Winger, Q., Westhusin, M.,Smith, L. and King, W. (2001). Reprogramming of telomerase activity and rebuilding of telomere length in 425 cloned cattle. Proc. Natl. Acad. Sci. USA98,1077-1082.

de Sousa Lopes, S. M., Carvalho, R., van den Driesche, S.,Goumans, M., ten Dijke, P. and Mummery, C. (2003). Distribution of phosphorylated Smad2 identifies target tissues of TGF beta ligands in mouse development. Gene. Expr. Patt.3, 355-360.

Dunn, N. R., Vincent, S., Oxburgh, L., Robertson, E. and Bikkof,E. (2004). Combinatorial activities of Smad2 and Smad3 regulate mesoderm formation and patterning in the mouse embryo. Development131,1717-1728.

Gilbert, S. F. (2003). In Developmental Biology, 7th edn (ed. S. F. Gilbert),pp. 305-343. Sunderland, MA: Sinauer Associates.

Goumans, M. J. and Mummery, C. (2000). Functional analysis of the TGFbeta receptor/Smad pathway through gene ablation in mice. Int. J. Dev. Biol.44,253-265.

Harland, R. and Gerhart, J. (1997). Formation and function of Spemann's organizer. Annu. Rev. Cell Dev. Biol.13,611-667.

Inman, G., Nicolas, F., Callahan, J., Harling, J., Gaster, L.,Reith, A., Laping, N. and Hill, C. (2002). SB-431542 is a potent and specific inhibitor of transforming growth factor-B superfamily Type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol. Pharmacol.62,65-74.

Laping, N. J., Grygielko, E., Mathur, A., Butter, S., Bomberger,J., Tweed, C., Martin, W., Fornwald, J., Lehr, R., Harling, J. et al. (2002). Inhibition of transforming growth factor(TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542. Mol. Pharmacol.62,58-64.

Massague, J., Blain, S. and Lo, R. (2000). TGFbeta signaling in growth control, cancer, and heritable disorders. Cell103,295-309.

Meijer, L., Skaltsounis, A., Magiatis, P., Polychronopoulos, P.,Knockaert, M., Leost, M., Ryan, X., Vonica, C., Brivanlou, A., Dajani,R. et al. (2003). GSK-3-selective inhibitors derived from Tyrian purple indirubins. Chem. Biol.10,1255-1266.

Mishina, Y., Hanks, M., Miura, S., Tallquist, M. and Behringer,R. (2002). Generation of Bmpr/Alk3 conditional knockout mice. Genesis32,69-72.

Mummery, C. L. and van den Eijnden-van Raaij, A. J.(1993). Type beta transforming growth factors and activins in differentiating embryonal carcinoma cells, embryonic stem cells and early embryonic development. Int. J. Dev. Biol.37,169-182.

Munoz-Sanjuan, I. and Brivanlou, A. H. (2002). Neural induction, the default model and embryonic stem cells. Nat. Rev. Neurosci.3,271-280.

Nagy, A. (2003). Manipulating the Mouse Embryo: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

Paria, B. C. and Dey, S. K. (1990). Preimplantation embryo development in vitro: cooperative interactions among embryos and role of growth factors. Proc. Natl. Acad. Sci. USA87,4756-4760.

Paria, B. C., Jones, K., Flanders, K. and Dey, S.(1992). Localization and binding of transforming growth factor-beta isoforms in mouse preimplantation embryos and in delayed and activated blastocysts. Dev. Biol.151,91-104.

Qi, X., Li, T., Hao, J., Hu, J., Wang, J., Simmons, H., Miura,S., Mishina, Y. and Zhao, G. (2004). BMP4 supports self-renewal of embryonic stem cells by inhibiting mitogen-activated protein kinase pathways. Proc. Natl. Acad. Sci. USA101,6027-6032.

Reubinoff, B. E., Pera, M., Fong, C., Trounson, A. and Bongso,A. (2000). Embryonic stem cell lines from human blastocysts:somatic differentiation in vitro. Nat. Biotechnol.18,399-404.

Roelen, B. A., Lin, H., Knezevic, V., Freund, E. and Mummery,C. (1994). Expression of TGF-beta s and their receptors during implantation and organogenesis of the mouse embryo. Dev. Biol.166,716-728.

Roelen, B. A., Goumans, M., Zwijsen, A. and Mummery, C.(1998). Identification of two distinct functions for TGF-beta in early mouse development. Differentiation64, 19-31.

Rosler, E., Fisk, G., Ares, X., Irving, J., Miura, T., Rao, M. and Carpenter, M. (2004). Long-term culture of human embryonic stem cells in feeder-free conditions. Dev. Dyn.229,259-274.

Rossant, J. (2001). Stem cells from the mammalian blastocyst. Stem Cells19,477-482.

Sato, N., Sanjuan, I., Heke, M., Uchida, M., Naef, F. and Brivanlou, A. (2003). Molecular signature of human embryonic stem cells and its comparison with the mouse. Dev. Biol.260,404-413.

Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. and Brivanlou, A. (2004). Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med.10, 55-63.

Shi, Y. and Massague, J. (2003). Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell113,685-700.

Sirard, C., de la Pompa, J., Elia, A., Itie, A., Mirtsos, C.,Cheung, A., Hahn, S., Wakeham, A., Schwartz, L., Kern, S. et al.(1998). The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev.12,107-119.

Slager, H. G., Lawson, K., van den Eijnden-van Raaij, A., de Laat, S. and Mummery, C. (1991). Differential localization of TGF-beta 2 in mouse preimplantation and early postimplantation development. Dev. Biol.145,205-218.

Smith, A. G. (2001). Embryo-derived stem cells:of mice and men. Annu. Rev. Cell Dev. Biol.17,435-462.

Song, J., Oh, S., Schrewe, H., Nomura, M., Lei, H., Okano, M.,Gridley, T. and Li, E. (1999). The type II activin receptors are essential for egg cylinder growth, gastrulation, and rostral head development in mice. Dev. Biol.213,157-169.

Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S., Waknitz, M.,Swiergiel, J., Marshall, V. and Jones, J. (1998). Embryonic stem cell lines derived from human blastocysts. Science282,1145-1147.

Vallier, L., Reynolds, D. and Pedersen, R. A.(2004). Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Dev. Biol.275,403-421.

Weinstein, M., Yang, X., Li, C., Xu, X., Gotay, J. and Deng,C. (1998). Failure of egg cylinder elongation and mesoderm induction in mouse embryos lacking the tumor suppressor smad2. Proc. Natl. Acad. Sci. USA95,9378-9383.

Xanthos, J. B., Kofron, M., Tao, Q., Schaible, K., Wylie, C. and Heasman, J. (2002). The roles of three signaling pathways in the formation and function of the Spemann Organizer. Development129,4027-4043.

Xu, R. H., Chen, X., Li, D., Li, R., Addicks, G., Glennon, C.,Zwaka, T. and Thomson, J. (2002). BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat. Biotechnol.20,1261-1264.

Ying, Q. L., Nichols, J., Chambers, I. and Smith, A.(2003). BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell115,281-292.

Zhu, C. H. and Xie, T. (2003). Clonal expansion of ovarian germline stem cells during niche formation in Drosophila. Development130,2579-2588.