TENDL: Complete Nuclear Data Library for Innovative Nuclear Science and Technology

Nuclear Data Sheets - Tập 155 - Trang 1-55 - 2019
A. J. Koning1,2, D. Rochman3, Jean-Christophe Sublet2, A. Mengoni4,5, Michael Fleming6,7, S.C. van der Marck4
1Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
2Nuclear Data Section, International Atomic Energy Agency, P.O. Box 100, 1400, Vienna, Austria
3Laboratory for Reactor Physics Systems Behaviour, Paul Scherrer Institut, Villigen, Switzerland
4NRG, Westerduinweg 3, 1755 LE Petten, Netherlands
5Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
6Nuclear Energy Agency, OECD, 92100 Boulogne-Billancourt, France
7United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon, OX14 3DB, United Kingdom

Tóm tắt

Từ khóa


Tài liệu tham khảo

Otuka, 2014, Towards a more complete and accurate experimental nuclear reaction data library (EXFOR), Nucl. Data Sheets, 120, 272, 10.1016/j.nds.2014.07.065

Mattoon, 2012, Generalized nuclear data: A new structure (with supporting infrastructure) for handling nuclear data, Nucl. Data Sheets, 113, 3145, 10.1016/j.nds.2012.11.008

Koning, 2008, TALYS-1.0, 211

Brown, 2018, ENDF/B-VIII.0: The 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data, Nucl. Data Sheets, 148, 1, 10.1016/j.nds.2018.02.001

Koning, 2008, Towards sustainable nuclear energy: Putting nuclear physics to work, Annals Nucl. En., 35, 2024, 10.1016/j.anucene.2008.06.004

Koning, 2017

Xu, 2013, Databases and tools for nuclear astrophysics applications BRUSsels Nuclear LIBrary (BRUSLIB), Nuclear Astrophysics Compilation of REactions II (NACRE II) and Nuclear NETwork GENerator (NETGEN), Astron. Astrophys. A, 106, 549

Koning, 2012, Modern nuclear data evaluation with the TALYS code system, Nucl. Data Sheets, 113, 2841, 10.1016/j.nds.2012.11.002

Larson, 2008

Sublet, 2011

Cullen, 2017

Mughabghab, 2006

Moxon, 2010, REFIT-2009 A Least-Square Fitting Program for Resonance Analysis of Neutron Transmission, Capture, Fission and Scattering Data

Rochman, 2017, Radiative neutron capture: Hauser Feshbach vs. statistical resonances, Phys. Lett. B, 764, 109, 10.1016/j.physletb.2016.11.018

Rochman, 2013, From average parameters to statistical resolved resonances, Annals Nucl. En., 51, 60, 10.1016/j.anucene.2012.08.015

Rochman, 2008, Pb and Bi neutron data libraries with full covariance evaluation and improved integral tests, Nucl. Inst. Meth. Phys. Res. A, 589, 85, 10.1016/j.nima.2008.02.003

Feshbach, 1947, On the scattering and absorption of particles by atomic nuclei, Phys. Rev., 71, 145, 10.1103/PhysRev.71.145

Forrest, 2007

Kopecky, 1992

Sublet, 2009

Koning, 2003, Local and global nucleon optical models from 1 keV to 200 MeV, Nucl. Phys. A, 713, 231, 10.1016/S0375-9474(02)01321-0

Ribon, 1986, The resonance self-shielding calculation with regularized random ladders, Annals Nucl. En., 13, 209, 10.1016/0306-4549(86)90028-9

Zerovnik, 2011, Influence of resonance parameters' correlations on the resonance integral uncertainty; 55Mn case, Nucl. Inst. Meth. Phys. Res. A, 632, 137, 10.1016/j.nima.2010.12.210

Raynal, 1994

Soukhovitskii, 2004, Global coupled-channel optical potential for nucleon-actinide interaction from 1 keV to 200 MeV, J. Phys. G, 30, 905, 10.1088/0954-3899/30/7/007

Watanabe, 1958, High energy scattering of deuterons by complex nuclei, Nucl. Phys., 8, 484, 10.1016/0029-5582(58)90180-9

Madland, 1988, Recent results in the development of a global medium-energy nucleon-nucleus optical model potential, 103

Avrigeanu, 2014, Further explorations of the alpha-particle optical model potential at low energies for the mass range A=45-209, Phys. Rev. C, 90, 10.1103/PhysRevC.90.044612

Koning, 2008, Global and local level density models, Nucl Phys. A, 810, 13, 10.1016/j.nuclphysa.2008.06.005

Kopecky, 1990, Test of gamma-ray strength functions in nuclear reaction model calculations, Phys. Rev. C, 41, 1941, 10.1103/PhysRevC.41.1941

Capote, 2009, RIPL - reference input parameter library for calculation of nuclear reactions and nuclear data evaluation, Nucl. Data Sheets, 110, 3107, 10.1016/j.nds.2009.10.004

Filipescu, 2014, Photoneutron cross sections for samarium isotopes: Toward a unified understanding of (γ,n) and (n,γ) reactions in the rare earth region, Phys. Rev. C, 90, 10.1103/PhysRevC.90.064616

Hilaire, 2003, Comparisons between various width fluctuation correction factors for compound nucleus reactions, Ann. Phys., 306, 209, 10.1016/S0003-4916(03)00076-9

Koning, 2004, A global pre-equilibrium model from 7 to 200 MeV based on the optical model potential, Nucl. Phys. A, 744, 15, 10.1016/j.nuclphysa.2004.08.013

Qian, 2003, On Monte Carlo methods for Bayesian inference, Ecol. Model., 159, 269, 10.1016/S0304-3800(02)00299-5

Koning, 2015, Bayesian Monte Carlo method for nuclear data evaluation, Eur. Phys. J. A, 51, 184, 10.1140/epja/i2015-15184-x

Helgesson, 2017, Combining Total Monte Carlo and Unified Monte Carlo: Bayesian nuclear data uncertainty quantification from auto-generated experimental covariances, Prog. Nucl. Energy, 96, 76, 10.1016/j.pnucene.2016.11.006

Smith, 2007, A Unified Monte Carlo approach to fast neutron cross section data evaluation, 736

Capote, 2012, A New Formulation of the Unified Monte Carlo Approach (UMC-B) and Cross-Section Evaluation for the Dosimetry Reaction 55Mn(n,γ)56Mn, J. ASTM Int., 9, 10.1520/JAI104115

Bauge, 2011, Evaluation of the Covariance Matrix of 239Pu Neutronic Cross Sections in the Continuum Using the Backward-forward Monte-Carlo Method, J. Kor. Phys. Soc., 59, 1218, 10.3938/jkps.59.1218

Schnabel, 2016, Differential cross sections and the impact of model defects in nuclear data evaluation, EPJ Web Conf., 111, 10.1051/epjconf/201611109001

MacFarlane, 2010, Methods for Processing ENDF/B-VII with NJOY, Nucl. Data Sheets, 111, 2739, 10.1016/j.nds.2010.11.001

Rochman, 2016, Re-evaluation of the thermal neutron capture cross section of 147Nd, Annals Nucl. Energy, 94, 612, 10.1016/j.anucene.2016.03.024

Wahl, 2002

Schmidt, 2016, General Description of Fission Observables: GEF Model Code, Nucl. Data Sheets, 131, 107, 10.1016/j.nds.2015.12.009

Madland, 1982, New calculation of prompt fission neutron spectra and average prompt neutron multiplicities, Nucl. Sci. Eng., 81, 213, 10.13182/NSE82-5

Rochman, 2018, Nuclear data correlation between different isotopes via integral information, EPJ Nucl. Sci. Technol., 4, 7, 10.1051/epjn/2018006

Trkov, 2011

Talou, 2007

Dunford, 1995

Kahler, 2010, Methods for processing ENDF/B-VII with NJOY, Nucl. Data Sheets, 111, 2739, 10.1016/j.nds.2010.11.001

Beck, 2014

Koning, 2012, Modern Nuclear Data Evaluation with the TALYS Code System, Nucl. Data Sheets, 113, 2841, 10.1016/j.nds.2012.11.002

Ge, 2017, CENDL project, the chinese evaluated nuclear data library, EPJ Web Conf., 146, 10.1051/epjconf/201714602002

O. Cabellos, The JEFF-3.3 nuclear data library, 2018, to be published.

Shibata, 2011, JENDL-4.0: A new library for nuclear science and engineering, J. Nucl. Sci. Technol., 48, 1, 10.1080/18811248.2011.9711675

Zsolnay, 2012

Sublet, 2010

Iwamoto, 2016, Photonuclear data file, JAEA-Conf, 2016-004, 53

2000

Watanabe, 2011, Status of JENDL high energy file, J. Kor. Phys. Soc., 59, 1040, 10.3938/jkps.59.1040

2001

Fleming, 2018, HEIR: A High-Energy Intra-Nuclear Cascade Liège-based residual nuclear data library for simulation with FISPACT-II, Nucl. Inst. Meth. Phys. Res. A, 10.1016/j.nima.2018.06.065

Kalbach, 2017, Phenomenological model for light-projectile breakup, Phys. Rev. C, 95, 10.1103/PhysRevC.95.014606

Kalbach, 2005, Preequilibrium reactions with complex particle channels, Phys. Rev. C, 71, 10.1103/PhysRevC.71.034606

Simakov, 2017, Update of the alpha-n yields for reactor fuel materials for the interest of nuclear safeguards, Nucl. Data Sheets, 139, 190, 10.1016/j.nds.2017.01.005

Murata, 2006, Evaluation of the (alpha, xn) reaction data for JENDL/AN-2005, JAEA-Research, 2006-052

Luo, 2011, Cross sections for fast-neutron interaction with erbium isotopes, J. Radioanal. Nucl. Chem., 289, 455, 10.1007/s10967-011-1095-x

Dzysiuk, 2012, Measurement and systematic study of (n, x) cross sections for Dysprosium (Dy), Erbium (Er), and Ytterbium (Yb) isotopes at 14.7 MeV neutron energy, Phys. Rev. C, 86, 10.1103/PhysRevC.86.034609

Amemiya, 1982, Neutron activation cross section of Molybdenum isotopes at 14.8 MeV, J. Nucl. Sci. Technol., 19, 781, 10.1080/18811248.1982.9734218

Cuzzocrea, 1967, Activation cross sections of Mo isotopes for 14.1 MeV neutrons, Nucl. Phys. A, 103, 616, 10.1016/0375-9474(67)90927-X

2015

Fleming, 2015

Bao, 2000, Neutron Cross Sections for Nucleosynthesis Studies, At. Data Nucl. Data Tables, 76, 70, 10.1006/adnd.2000.0838

Dillmann, 2009, KADoNiS v0.3 - The third update of the Karlsruhe Astrophysical Database of Nucleosynthesis in Stars

Rauscher, 2000, Astrophysical reaction rates from statistical model calculations, At. Data Nucl. Data Tables, 75, 1, 10.1006/adnd.2000.0834

Nobre, 2014, Fitting Prompt Fission Neutron Spectra Using Kalman Filter Integrated with Empire Code, Nucl. Data Sheets, 118, 224, 10.1016/j.nds.2014.04.042

Pelloni, 2018, Cross-section adjustment in the fast energy range on the basis of an Asymptotic Progressing nuclear data Incremental Adjustment (APIA) methodology, Annals Nucl. En., 115, 323, 10.1016/j.anucene.2018.01.037

Helgesson, 2017, Combining Total Monte Carlo and Unified Monte Carlo: Bayesian nuclear data uncertainty quantification from auto-generated experimental covariances, Prog. Nucl. Energy, 96, 76, 10.1016/j.pnucene.2016.11.006

Rochman, 2016, A Bayesian Monte Carlo method for fission yield covariance information, Annals Nucl. En., 95, 125, 10.1016/j.anucene.2016.05.005

De Saint Jean, 2015, Evaluation of cross section uncertainties using physical constraints: Focus on integral experiments, Nucl. Data Sheets, 123, 178, 10.1016/j.nds.2014.12.031

Rochman, 2017, Correlation νp-σ-χ in the fast neutron range via integral information, EPJ Nucl. Sci. Technol., 3, 14, 10.1051/epjn/2017009

Rochman, 2011, How to Randomly Evaluate Nuclear Data: A New Data Adjustment Method Applied to 239Pu, Nucl. Sci. Eng., 169, 68, 10.13182/NSE10-66

Rochman, 2012, Evaluation and Adjustment of the Neutron-Induced Reactions of 63,65Cu, Nucl. Sci. Eng., 170, 265, 10.13182/NSE11-37

Leray, 2017, Fission yield covariances for JEFF: A Bayesian Monte Carlo method, EPJ Web Conf., 146, 10.1051/epjconf/201714609023

Bauge, 2015, Full Model Nuclear Data and Covariance Evaluation Process Using TALYS, Total Monte Carlo and Backward-forward Monte Carlo, Nucl. Data Sheets, 123, 201, 10.1016/j.nds.2014.12.035

Helgesson, 2017, Fitting a defect non-linear model with or without prior, distinguishing nuclear reaction products as an example, Rev. Sci. Instrum., 88, 10.1063/1.4993697

Salvatores, 2013

Briggs, 2004

MacFarlane

Sublet, 2017, FISPACT-II: An Advanced Simulation System for Activation, Transmutation and Material Modelling, Nucl. Data Sheets, 139, 77, 10.1016/j.nds.2017.01.002

2018

Goorly, 2012, Initial MCNP6 release overview, Nucl. Technol., 180, 298, 10.13182/NT11-135

Leppänen, 2015, The Serpent Monte Carlo code: Status, development and applications in 2013, Annals Nucl. En., 82, 142, 10.1016/j.anucene.2014.08.024

Brun, 2015, TRIPOLI-4, CEA, EDF and AREVA reference Monte Carlo code, Annals Nucl. En., 82, 151, 10.1016/j.anucene.2014.07.053

Gilbert

R.E. MacFarlane, D.W. Muir, R.M. Boicourt, A.C. Kahler, The NJOY Nuclear data processing system – LA-UR-12-27079 (Version 2012-082).

Gilbert, 2015, Energy spectra of primary knock-on atoms under neutron irradiation, J. Nucl. Mater., 467, 121, 10.1016/j.jnucmat.2015.09.023

2015

Oyama, 1988, Measurements and analyses of angular neutron flux spectra on graphite and lithium-oxide slabs irradiated with 14.8 MeV neutrons, J. Nucl. Sci. Technol., 25, 419, 10.1080/18811248.1988.9733610

Ichihara, 2003, Measurement of leakage neutron spectra from a spherical pile of Zirconium irradiated with 14 MeV neutrons and validation of its nuclear data, J. Nucl. Sci. Technol., 40, 417, 10.1080/18811248.2003.9715374

Wong, 1972

Forrest, 2008

Fleming, 2017, TALYS/TENDL verification and validation processes: Outcomes and recommendations, EPJ Web Conf., 146, 10.1051/epjconf/201714602033

Gilbert, 2018

Maekawa, 2000, Decay heat experiment on thirty-two fusion reactor relevant materials irradiated by 14-MeV neutrons, Fusion Eng. Des., 47, 377, 10.1016/S0920-3796(99)00079-4

Maekawa, 1998

Eastwood, 2015, Inventory Uncertainty Quantification using TENDL Covariance Data in Fispact-II, Nucl. Data Sheets, 123, 84, 10.1016/j.nds.2014.12.015

Dzysiuk, 2017, Improving activation cross section data with TALYS, EPJ Web Conf., 146, 10.1051/epjconf/201714602047

Fleming, 2018

Mendoza, 2014, New Standard Evaluated Neutron Cross Section Libraries for the GEANT4 Code and First Verification, IEEE Trans. on Nucl. Sci., 61, 2357, 10.1109/TNS.2014.2335538

Rakhno, 2014, Modelling proton-induced reactions at low energies in the MARS15 code

Haugh, 2017

Capote, 2012, Updating and Extending the IRDF-2002 Dosimetry Library, J. ASTM Int., 9, 1, 10.1520/JAI104119

Rochman, 2016, Nuclear data uncertainty for criticality-safety: Monte Carlo vs. linear perturbation, Annals Nucl. En., 92, 150, 10.1016/j.anucene.2016.01.042

Gilli, 2013, Uncertainty quantification for criticality problems using non-intrusive and adaptive Polynomial Chaos techniques, Annals Nucl. En., 56, 71, 10.1016/j.anucene.2013.01.009

Zhu, 2016, Testing the Sampling-Based NUSS-RF Tool for the Nuclear Data Related Global Sensitivity Analysis with Monte Carlo Neutronics Calculations, Nucl. Sci. Eng., 184, 69, 10.13182/NSE14-142

Cruz, 2014, Uncertainty analysis on reactivity and discharged inventory due to 235,238U, 239,240,241Pu, and fission products: Application to a Pressurized Water Reactor Fuel assembly, Nucl. Technol., 185, 174, 10.13182/NT12-154

da Cruz, 2014, Quantification of Uncertainties due to 235,238U, 239,240,241Pu and Fission Products Nuclear Data Uncertainties for a PWR Fuel Assembly, Nucl. Data Sheets, 118, 531, 10.1016/j.nds.2014.04.126

Rochman, 2014, Nuclear data uncertainty propagation for a typical PWR fuel assembly with bur-nup, Nucl. Eng. Technol., 46, 353, 10.5516/NET.01.2014.712

Rochman, 2017, Nuclear Data Uncertainties for Typical LWR Fuel Assemblies and a Simple Reactor Core, Nucl. Data Sheets, 139, 1, 10.1016/j.nds.2017.01.001

Rochman, 2009, Uncertainties for criticality-safety benchmarks and keff distributions, Annals Nucl. En., 36, 810, 10.1016/j.anucene.2009.01.018

Zhu, 2014, Comparison of Two Approaches for Nuclear Data Uncertainty Propagation in MCNPX for Selected Fast Spectrum Critical Benchmarks, Nucl. Data Sheets, 118, 388, 10.1016/j.nds.2014.04.088

Vasiliev, 2018, On the options for incorporating nuclear data uncertainties in criticality safety assessments for LWR fuel, Annals Nucl. En., 116, 57, 10.1016/j.anucene.2018.01.046

Terranova, 2015, Covariance Matrix Evaluations for Independent Mass Fission Yields, Nucl. Data Sheets, 123, 225, 10.1016/j.nds.2014.12.039

Fiorito, 2016, Generation of fission yield covariances to correct discrepancies in the nuclear data libraries, Annals Nucl. En., 88, 12, 10.1016/j.anucene.2015.10.027

Noguere, 2018, Systematics of Nd cumulative fission yields for neutron-induced fission of 235U, 238U, 238Pu, 239Pu, 240Pu and 241Pu, Eur. Phys. J. Plus, 133, 99, 10.1140/epjp/i2018-11926-y

Leray, 2017, Fission yield covariances for JEFF: A Bayesian Monte Carlo method, EPJ Web Conf., 146, 10.1051/epjconf/201714609023

Sjöstrand, 2017, Propagation of nuclear data uncertainties for fusion power measurements, EPJ Web Conf., 146, 10.1051/epjconf/201714602034

Rochman, 2010, Exact nuclear data uncertainty propagation for fusion neutronics calculations, Fusion Eng. Des., 85, 669, 10.1016/j.fusengdes.2010.03.034

Rochman, 2014, Uncertainty Propagation with Fast Monte Carlo Techniques, Nucl. Data Sheets, 118, 367, 10.1016/j.nds.2014.04.082

da Cruz, 2015, Uncertainty on feedback coefficients and key core parameters for a pressurized water reactor due to nuclear data uncertainties

Rochman, 2011, Uncertainties for the kalimer sodium fast reactor: Void reactivity coefficient, keff, βeff, depletion and radiotoxicity, J. Nucl. Sci. Technol., 48, 1193, 10.1080/18811248.2011.9711807

Alhassan, 2016, Selecting benchmarks for reactor simulations: An application to a lead fast reactor, Annals Nucl. En., 96, 158, 10.1016/j.anucene.2016.05.033

Alhassan, 2015, Uncertainty and correlation analysis of lead nuclear data on reactor parameters for the European Lead Cooled Training Reactor, Annals Nucl. En., 75, 26, 10.1016/j.anucene.2014.07.043

Cabellos, 2014, Propagation of nuclear data uncertainties for PWR core analysis, Nucl. Eng. Technol., 46, 299, 10.5516/NET.01.2014.709

Leray, 2017, Methodology for core analyses with nuclear data uncertainty quantification and application to Swiss PWR operated cycles, Annals Nucl. En., 110, 547, 10.1016/j.anucene.2017.07.006

Rochman, 2018, How inelastic scattering stimulates nonlinear reactor core parameter behaviour, Annals Nucl. En., 112, 236, 10.1016/j.anucene.2017.10.018

da Cruz, 2014, Total Monte Carlo method applied to the assessment of uncertainties in a reactivity-initiated accident

Dokhane, 2018, Validation of PSI best estimate plus uncertainty methodology against SPERT-III reactivity initiated accident experiments, Annals Nucl. En., 118, 178, 10.1016/j.anucene.2018.04.022

Rochman, 2018, Uncertainties for Swiss LWR spent nuclear fuels due to nuclear data, Accept. Eur. J. Phys. N

Rochman, 2018, Consistent criticality and radiation studies of Swiss spent nuclear fuel: The CS2M approach, J. Hazard. Mater., 357, 384, 10.1016/j.jhazmat.2018.05.041

Griffin, 2017, Characterization of the energy-dependent uncertainty and correlation in silicon neutron displacement damage metrics, EPJ Web Conf., 146, 10.1051/epjconf/201714602008

J.-Ch. Sublet, I. Bondarenko, V. Khryachkov, et al., Neutron-induced damage simulations: Beyond defect production cross-section, displacement per atom and iron-based metrics, 2018, unpublished.