TEMPO/HCl/NaNO2 Catalyst: A Transition‐Metal‐Free Approach to Efficient Aerobic Oxidation of Alcohols to Aldehydes and Ketones Under Mild Conditions

Chemistry - A European Journal - Tập 14 Số 9 - Trang 2679-2685 - 2008
Xinliang Wang1,2, Renhua Liu3,2, Jin Yu1, Xinmiao Liang1,3
1Dalian Institute of Chemical Physics, Institution Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China,
2these authors contributed equally to this work
3School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China

Tóm tắt

AbstractHydrochloric acid, a very inexpensive and readily available inorganic acid, has been found to cooperate exquisitely with NaNO2/TEMPO in catalyzing the molecular‐oxygen‐driven oxidation of a broad range of alcohol substrates to the corresponding aldehydes and ketones. This transition‐metal‐free catalytic oxidative conversion is novel and represents an interesting alternative route to the corresponding carbonyl compounds to the metal‐catalyzed aerobic oxidation of alcohols. The reaction is highly selective with respect to the desired product when carried out at room temperature in air at atmospheric pressure. Notably, the use of very inexpensive NaNO2 and HCl in combination with TEMPO for this highly selective aerobic oxidation of alcohols in air at ambient temperature makes the reaction operationally and economically very attractive. The results of mechanistic studies, performed with the aid of electrospray ionization mass spectrometry (ESI‐MS), are presented and discussed. TEMPO, TEMPOH, and TEMPO+ were observed in the redox cycle by means of ESI‐MS. On the basis of these observations, a mechanism is proposed that may provide an insight into the newly developed aerobic alcohol oxidation.

Từ khóa


Tài liệu tham khảo

 

Hudlicky M., 1990, Oxidations in Organic Chemistry

Larock R. C., 1999, Comprehensive Organic Transformations, 1234

Arends I. W. C. E., 2004, Modern Oxidation Methods, 83, 10.1002/3527603689.ch4

10.1002/9783527619405.ch5m

 

Schlecht M. F., 1991, Comprehensive Organic Synthesis, 251

Smith M. B., 2001, Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 1506

For copper‐catalyzed aerobic alcohol oxidation see:

10.1126/science.274.5295.2044

10.1021/jo982239s

10.1002/ange.200353458

10.1002/anie.200353458

For reviews on metal‐catalyzed aerobic alcohol oxidations see:

10.1016/j.tet.2004.01.043

10.1021/cr0200116

10.1016/j.tet.2006.06.065

For reviews on Pd‐catalyzed aerobic oxidations see:

10.1016/S0040-4020(03)00866-4

10.1002/ange.200300630

10.1002/anie.200300630

10.1126/science.1114666

10.1021/ar050189p

10.1002/ange.200602138

10.1002/anie.200602138

For palladium‐catalyzed aerobic alcohol oxidation see:

10.1021/jo971268k

10.1021/jo9906734

10.1126/science.287.5458.1636

10.1021/ja015683c

10.1002/1615-4169(200206)344:3/4<355::AID-ADSC355>3.0.CO;2-S

10.1021/ja016806w

10.1021/ol026988e

10.1039/b209344h

10.1002/ange.200390044

10.1002/anie.200390076

10.1002/ange.200351997

10.1002/anie.200351997

10.1021/ja031936l

10.1021/ja047794s

10.1021/ja0488683

10.1021/ja049962m

10.1021/jo0482211

10.1016/j.molcata.2004.08.035

10.1021/ja050949r

10.1021/ol047381w

10.1002/ange.200461493

10.1002/anie.200461493

10.1021/ja057914b

10.1021/jo052192s

For ruthenium‐catalyzed aerobic oxidation see:

10.1021/ja973227b

10.1021/jo0163750

10.1002/1521-3757(20021202)114:23<4720::AID-ANGE4720>3.0.CO;2-P

10.1002/1521-3773(20021202)41:23<4538::AID-ANIE4538>3.0.CO;2-6

10.1039/B212585B

10.1021/ja0282691

10.1021/ja047608i

10.1016/j.tetlet.2005.07.005

10.1246/bcsj.79.981

For reviews of TEMPO‐catalyzed alcohol oxidation see:

10.3987/REV-87-373

10.1055/s-1996-4369

10.1021/cr000019k

10.1021/ar010075n

10.1016/S1381-1169(03)00286-3

10.1002/ejoc.200300332

10.1002/adsc.200404110

10.1016/j.molcata.2006.02.016

For transition‐metal‐assisted TEMPO‐catalyzed aerobic alcohol oxidations see:

10.1021/ja00323a064

10.1016/S0040-4039(00)00620-1

10.1016/S0040-4039(01)01245-X

10.1021/ja0103804

10.1021/jo0105843

10.1021/ol025721c

10.1039/b308668b

10.1039/b305941c

10.1002/adsc.200404063

10.1039/b509167e

10.1021/ol051293

10.1016/j.tetlet.2005.11.149

10.1021/jo060837y

10.1002/adsc.200600505

10.1002/ange.200301701

10.1002/anie.200301701

 

10.1021/ja031765k

10.1021/jo048369k

10.1021/jo0705824

10.1002/ange.200701918

10.1002/anie.200701918

10.1002/ange.200502702

2004, Angew. Chem. Int. Ed., 43, 3206

 

10.1021/jo00388a038

10.1021/jo00273a038

Anelli P. L., 1990, Org. Synth., 61, 212

10.1039/a905683a

10.1021/ja0620336

 

10.1021/jo982143y

10.1002/chem.200600290

10.1021/jo00289a016

10.1016/S0040-4039(98)02565-9

10.1021/jo9609790

10.1021/jo971046m

10.1021/jo9819032

10.1021/ol016501m

10.1021/ol005792g

10.1021/op010096x

10.1021/ol0272444

 

10.1016/j.tetlet.2005.10.123

10.1002/adsc.200505102

 

10.1002/9780470132357.ch16

10.1002/9780470132425.ch39

10.1002/3527603751

Sen V. D., 1993, Izv. Akad. Nauk Ser. Khim., 542

 

10.1016/S0040-4039(00)99949-0

10.1021/jo00208a047

See theSupporting Informationfor experimental details and the optimization procedure for the aerobic oxidation.

 

10.1016/0040-4020(95)00417-7

10.1021/jo0704614

Cole R. B., 1997, Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation and Applications

 

10.1021/ac0344384

10.1002/1521-3757(20020802)114:15<2863::AID-ANGE2863>3.0.CO;2-I

10.1002/1521-3773(20020802)41:15<2738::AID-ANIE2738>3.0.CO;2-X

10.1002/ange.200352044

10.1002/anie.200352044

10.1002/ange.200353076

10.1002/anie.200353076

10.1002/ange.200460059

10.1002/anie.200460059

10.1021/ja052588l

10.1002/rcm.2532

 

10.1255/ejms.263

10.1002/(SICI)1096-9888(200005)35:5<607::AID-JMS967>3.0.CO;2-7

10.1002/jms.691