TCAD simulation and modeling of impact ionization (II) enhanced thin film c-Si solar cells

Springer Science and Business Media LLC - Tập 15 - Trang 248-259 - 2015
Vikas Kumar1, Ammar Nayfeh1
1Department of Electrical Engineering and Computer Science (EECS), Institute Center for Future Energy Systems (iFES), Masdar Institute of Science and Technology, Masdar City, United Arab Emirates

Tóm tắt

This study investigates the performance of impact ionization (II) enhanced thin film c-Si solar cells using Technology Computer Aided Design simulation. 2-D numerical simulation is carried out to study the effect of II concerning the electrical and optical properties of the c-Si solar cell. We have introduced $$\hbox {P}^{+}$$ pocket with a high doping density of magnitude $$>$$ $$10^{18}\hbox { cm}^{-3}$$ in an intrinsic absorber layer which increases the electric field near the junction up to 1 MV/m. The effects of II on various solar cell parameters like short circuit current density, open circuit voltage and quantum efficiency are investigated. The simulation results show that high concentration of $$\hbox {P}^{+}$$ pocket enhances the short circuit current density $$(\hbox {J}_{\mathrm{sc}})$$ of c-Si solar cell without affecting its open circuit voltage $$(\hbox {V}_{\mathrm{oc}})$$ . In addition, the modelling results depict that by varying the doping concentration of $$\hbox {P}^{+}$$ pocket from $$10^{18}$$ to $$9\times 10^{18} \hbox { cm}^{-3}$$ , the current density increases from 18 to $$32\hbox { mA/cm}^{2}$$ . Furthermore, an internal quantum efficiency of 189 % is achieved at $$\hbox {P}^{+}$$ pocket doping concentration of $$9\times 10^{18}$$ $$\hbox {cm}^{-3}$$ .

Tài liệu tham khảo

Basore, P.A., Rover, D., Smith, A.: PC-1D version 2: enhanced numerical solar cell modelling. In: Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference, pp. 389–396 (1988) Basore, P.A.: Numerical modeling of textured silicon solar cells using PC-1D. IEEE Trans. Electron Devies 37(2), 337–343 (1990) Thorson, G.M.: B.P.A. Comput. Mech. Publ. 2, 6 (1991) Gray, J.: Purdue University, West Lafayette, IN (1982) Pinto, M.R., Rafferty, C.S., Yeager, H.R., Dutton, R.W.: PISCES-IIBIn. Supplementary Report. Stanford University, Stanford (1985) Altermatt, P.P.: Models for numerical device simulations of crystalline silicon solar cells–a review. J. Comput. Electron. 10(3), 314–330 (2011) Gray, J.L.: Adept: a general purpose numerical device simulator for modeling solar cells in one-, two-, and three-dimensions. In: Conference Record of the Twenty Second IEEE Photovoltaic Specialists Conference, pp. 436–438 (1991) Froitzheim, A., Stangl, R., Elstner, L., Kriegel, M., Fuhs, W.: AFORS-HET: a computer-program for the simulation of heterojunction solar cells to be distributed for public use. In: Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, pp. 279–282 (2003) Aberle, A.G., Heiser, G., Green, M.A.: Two-dimensional minority carrier flow in high-efficiency silicon solar cells at short-circuit, open-circuit and maximum power point operating conditions. Sol. Energy Mater. Sol. Cells 34(1), 149–160 (1994) Bank, R.E., Rose, D.J., Fichtner, W.: Numerical methods for semiconductor device simulation. IEEE Trans. Electron Devices 30(9), 1031–1041 (1983) Muller, S., Kells, K., Fichtner, W.: Automatic rectangle-based adaptive mesh generation without obtuse angles. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 11(7), 855–863 (1992) Heiser, G., Pommerell, C., Weis, J., Fichtner, W.: Three-dimensional numerical semiconductor device simulation: algorithms, architectures, results. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 10(10), 1218–1230 (1991) Florakis, A., Janssens, T., Poortmans, J., Vandervorst, W.: Process modeling for doped regions formation on high efficiency crystalline silicon solar cells. J. Comput. Electron. 13(1), 95–107 (2014) Zanuccoli, M., Semenihin, I., Michallon, J., Sangiorgi, E., Fiegna, C.: Advanced electro-optical simulation of nanowire-based solar cells. J. Comput. Electron. 12(4), 572–584 (2013) Schenk, A.: Rigorous theory and simplified model of the band-to-band tunneling in silicon. Solid-State Electron. 36(1), 19–34 (1993) Chynoweth, A.: Ionization rates for electrons and holes in silicon. Phys. Rev. 109(5), 1537 (1958) Van Overstraeten, R., De Man, H.: Measurement of the ionization rates in diffused silicon p-n junctions. Solid-State Electron. 13(5), 583–608 (1970) Grant, W.: Electron and hole ionization rates in epitaxial silicon at high electric fields. Solid-State Electron. 16(10), 1189–1203 (1973) Cartier, E., Fischetti, M., Eklund, E., McFeely, F.: Impact ionization in silicon. Appl. Phys. Lett. 62(25), 3339–3341 (1993) Roulston, D., Arora, N., Chamberlain, S.G.: Modeling and measurement of minority-carrier lifetime versus doping in diffused layers of n+-p silicon diodes. IEEE Trans. Electron Devices 29(2), 284–291 (1982) Fossum, J., Lee, D.: A physical model for the dependence of carrier lifetime on doping density in nondegenerate silicon. Solid-State Electron. 25(8), 741–747 (1982) Huldt, L., Nilsson, N., Svantesson, K.: The temperature dependence of band-to-band Auger recombination in silicon. Appl. Phys. Lett. 35(10), 776–777 (1979) Lochmann, W., Haug, A.: Phonon-assisted Auger recombination in Si with direct calculation of the overlap integrals. Solid State Commun. 35(7), 553–556 (1980) Kunz, K.S., Luebbers, R.J.: The Finite Difference Time Domain Method for Electromagnetics. CRC Press, Boca Raton, FL (1993) Jin, J.: The Finite Element Method in Electromagnetics. Wiley, New York (2014) Whittaker, D., Culshaw, I.: Scattering-matrix treatment of patterned multilayer photonic structures. Phys. Rev. B 60(4), 2610 (1999) Beaucarne, G., Duerinckx, F., Kuzma, I., Van Nieuwenhuysen, K., Kim, H., Poortmans, J.: Epitaxial thin-film Si solar cells. Thin Solid Films 511, 533–542 (2006) Poortmans, J., Arkhipov, V.: Thin Film Solar Cells: Fabrication, Characterization and Applications, vol. 5. Wiley, New York (2006) Queisser, H.J.: Multiple carrier generation in solar cells. Sol. Energy Mater. Sol. Cells 94(11), 1927–1930 (2010) Landsberg, P., Nussbaumer, H., Willeke, G.: Band-band impact ionization and solar cell efficiency. J. Appl. Phys. 74(2), 1451–1452 (1993) Kolodinski, S., Werner, J.H., Wittchen, T., Queisser, H.J.: Quantum efficiencies exceeding unity due to impact ionization in silicon solar cells. Appl. Phys. Lett. 63(17), 2405–2407 (1993) Brendel, R., Werner, J.H., Queisser, H.J.: Thermodynamic efficiency limits for semiconductor solar cells with carrier multiplication. Sol. Energy Mater. Sol. Cells 41, 419–425 (1996) De Vos, A., Desoete, B.: On the ideal performance of solar cells with larger-than-unity quantum efficiency. Sol. Energy Mater. Sol. Cells 51(3), 413–424 (1998) Badescu, V., Landsberg, P.T., De Vos, A., Desoete, B.: Statistical thermodynamic foundation for photovoltaic and photothermal conversion. IV. Solar cells with larger-than-unity quantum efficiency revisited. J. Appl. Phys. 89(4), 2482–2490 (2001) Werner, J.H., Kolodinski, S., Queisser, H.J.: Novel optimization principles and efficiency limits for semiconductor solar cells. Phys. Rev. Lett. 72(24), 3851 (1994) Würfel, P.: Solar energy conversion with hot electrons from impact ionisation. Sol. Energy Mater. Sol. Cells 46(1), 43–52 (1997) Ross, R.T., Nozik, A.J.: Efficiency of hot-carrier solar energy converters. J. Appl. Phys. 53(5), 3813–3818 (1982) Gorji, N.E., Reggiani, U., Sandrolini, L.: Auger generation effect on the thermodynamic efficiency of Cu (In, Ga) Se 2 thin film solar cells. Thin Solid Films 537, 285–290 (2013) Kumar, V., Nayfeh, A.: Thin film c-Si solar cell enhanced with impact ionization. In: Modelling Symposium (EMS), 2013 European, pp. 681–684 (2013) Maes, W., De Meyer, K., Van Overstraeten, R.: Impact ionization in silicon: a review and update. Solid-State Electron. 33(6), 705–718 (1990) Capasso, F., Willardson, R., Beer, A.: In: Tasang, W.T. (ed.) Semiconductors and semimetals, p. 1986. Academic Press, New York (1985) Nayfeh, A., Koldyaev, V., Beaud, P., Nagoga, M., Okhonin, S.: A leakage current model for SOI based floating body memory that includes the Poole-Frenkel effect. In: IEEE International SOI Conference, pp. 75–76 (2008) Synopsys TCAD Tools: User Guide for Sentaurus. In. (2010) Butcher, P.N., March, N.H., Tosi, M.P.: Crystalline Semiconducting Materials and Devices. Springer, New York (1986) Dziewior, J., Schmid, W.: Auger coefficients for highly doped and highly excited silicon. Appl. Phys. Lett. 31(5), 346–348 (1977) Van Overstraeten, R., Mertens, R.: Fundamental study of recombination in solar cells with highly doped substrates. Comm. Eur. Commun. 83 (1982) Altermatt, P.: Silicon solar cells. In: Piprek, J. (ed.) Optoelectronic Devices, pp. 313–341. Springer, New York (2005) Reference solar spectral Irradiance:Air Mass 1.5. http://rredc.nrel.gov/solar/spectra/am1.5/. Accessed 02 Dec 2014 SOPRA N&K Database. http://refractiveindex.info/. Accessed 02 Dec 2014 Zhao, J., Green, M.A.: Optimized antireflection coatings for high-efficiency silicon solar cells. IEEE Trans. Electron Devices 38(8), 1925–1934 (1991) Nelson, J.: The Physics of Solar Cells. Imperial College, London (2004) Hadi, S.A., Hashemi, P., Nayfeh, A., Hoyt, J.: Thin film a-Si/c-Si1-xGex/c-Si heterojunction solar cells: design and material quality requirements. ECS Trans. 41(4), 3–14 (2011) Hadi, S.A., Hashemi, P., DiLello, N., Polyzoeva, E., Nayfeh, A., Hoyt, J.L.: Effect of germanium fraction on the effective minority carrier lifetime in thin film amorphous-Si/crystalline-Si1xGex/crystalline-Si heterojunction solar cells. AIP Adv. 3(5), 052119 (2013) Hadi, S.A., Hashemi, P., DiLello, N., Polyzoeva, E., Nayfeh, A., Hoyt, J.L.: Thin-film Si 1—xGex HIT solar cells. Sol. Energy 103, 154–159 (2014) Kumar, V., Nayfeh, A.: Design of Impact Ionization enhanced thin film c-Si HIT solar cells. In: IEEE 40th Photovoltaic Specialist Conference (PVSC), pp. 1059–1063 (2014) Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices. Wiley, New York (2006)