TCAD simulation and modeling of impact ionization (II) enhanced thin film c-Si solar cells
Tóm tắt
This study investigates the performance of impact ionization (II) enhanced thin film c-Si solar cells using Technology Computer Aided Design simulation. 2-D numerical simulation is carried out to study the effect of II concerning the electrical and optical properties of the c-Si solar cell. We have introduced
$$\hbox {P}^{+}$$
pocket with a high doping density of magnitude
$$>$$
$$10^{18}\hbox { cm}^{-3}$$
in an intrinsic absorber layer which increases the electric field near the junction up to 1 MV/m. The effects of II on various solar cell parameters like short circuit current density, open circuit voltage and quantum efficiency are investigated. The simulation results show that high concentration of
$$\hbox {P}^{+}$$
pocket enhances the short circuit current density
$$(\hbox {J}_{\mathrm{sc}})$$
of c-Si solar cell without affecting its open circuit voltage
$$(\hbox {V}_{\mathrm{oc}})$$
. In addition, the modelling results depict that by varying the doping concentration of
$$\hbox {P}^{+}$$
pocket from
$$10^{18}$$
to
$$9\times 10^{18} \hbox { cm}^{-3}$$
, the current density increases from 18 to
$$32\hbox { mA/cm}^{2}$$
. Furthermore, an internal quantum efficiency of 189 % is achieved at
$$\hbox {P}^{+}$$
pocket doping concentration of
$$9\times 10^{18}$$
$$\hbox {cm}^{-3}$$
.
Tài liệu tham khảo
Basore, P.A., Rover, D., Smith, A.: PC-1D version 2: enhanced numerical solar cell modelling. In: Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference, pp. 389–396 (1988)
Basore, P.A.: Numerical modeling of textured silicon solar cells using PC-1D. IEEE Trans. Electron Devies 37(2), 337–343 (1990)
Thorson, G.M.: B.P.A. Comput. Mech. Publ. 2, 6 (1991)
Gray, J.: Purdue University, West Lafayette, IN (1982)
Pinto, M.R., Rafferty, C.S., Yeager, H.R., Dutton, R.W.: PISCES-IIBIn. Supplementary Report. Stanford University, Stanford (1985)
Altermatt, P.P.: Models for numerical device simulations of crystalline silicon solar cells–a review. J. Comput. Electron. 10(3), 314–330 (2011)
Gray, J.L.: Adept: a general purpose numerical device simulator for modeling solar cells in one-, two-, and three-dimensions. In: Conference Record of the Twenty Second IEEE Photovoltaic Specialists Conference, pp. 436–438 (1991)
Froitzheim, A., Stangl, R., Elstner, L., Kriegel, M., Fuhs, W.: AFORS-HET: a computer-program for the simulation of heterojunction solar cells to be distributed for public use. In: Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, pp. 279–282 (2003)
Aberle, A.G., Heiser, G., Green, M.A.: Two-dimensional minority carrier flow in high-efficiency silicon solar cells at short-circuit, open-circuit and maximum power point operating conditions. Sol. Energy Mater. Sol. Cells 34(1), 149–160 (1994)
Bank, R.E., Rose, D.J., Fichtner, W.: Numerical methods for semiconductor device simulation. IEEE Trans. Electron Devices 30(9), 1031–1041 (1983)
Muller, S., Kells, K., Fichtner, W.: Automatic rectangle-based adaptive mesh generation without obtuse angles. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 11(7), 855–863 (1992)
Heiser, G., Pommerell, C., Weis, J., Fichtner, W.: Three-dimensional numerical semiconductor device simulation: algorithms, architectures, results. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 10(10), 1218–1230 (1991)
Florakis, A., Janssens, T., Poortmans, J., Vandervorst, W.: Process modeling for doped regions formation on high efficiency crystalline silicon solar cells. J. Comput. Electron. 13(1), 95–107 (2014)
Zanuccoli, M., Semenihin, I., Michallon, J., Sangiorgi, E., Fiegna, C.: Advanced electro-optical simulation of nanowire-based solar cells. J. Comput. Electron. 12(4), 572–584 (2013)
Schenk, A.: Rigorous theory and simplified model of the band-to-band tunneling in silicon. Solid-State Electron. 36(1), 19–34 (1993)
Chynoweth, A.: Ionization rates for electrons and holes in silicon. Phys. Rev. 109(5), 1537 (1958)
Van Overstraeten, R., De Man, H.: Measurement of the ionization rates in diffused silicon p-n junctions. Solid-State Electron. 13(5), 583–608 (1970)
Grant, W.: Electron and hole ionization rates in epitaxial silicon at high electric fields. Solid-State Electron. 16(10), 1189–1203 (1973)
Cartier, E., Fischetti, M., Eklund, E., McFeely, F.: Impact ionization in silicon. Appl. Phys. Lett. 62(25), 3339–3341 (1993)
Roulston, D., Arora, N., Chamberlain, S.G.: Modeling and measurement of minority-carrier lifetime versus doping in diffused layers of n+-p silicon diodes. IEEE Trans. Electron Devices 29(2), 284–291 (1982)
Fossum, J., Lee, D.: A physical model for the dependence of carrier lifetime on doping density in nondegenerate silicon. Solid-State Electron. 25(8), 741–747 (1982)
Huldt, L., Nilsson, N., Svantesson, K.: The temperature dependence of band-to-band Auger recombination in silicon. Appl. Phys. Lett. 35(10), 776–777 (1979)
Lochmann, W., Haug, A.: Phonon-assisted Auger recombination in Si with direct calculation of the overlap integrals. Solid State Commun. 35(7), 553–556 (1980)
Kunz, K.S., Luebbers, R.J.: The Finite Difference Time Domain Method for Electromagnetics. CRC Press, Boca Raton, FL (1993)
Jin, J.: The Finite Element Method in Electromagnetics. Wiley, New York (2014)
Whittaker, D., Culshaw, I.: Scattering-matrix treatment of patterned multilayer photonic structures. Phys. Rev. B 60(4), 2610 (1999)
Beaucarne, G., Duerinckx, F., Kuzma, I., Van Nieuwenhuysen, K., Kim, H., Poortmans, J.: Epitaxial thin-film Si solar cells. Thin Solid Films 511, 533–542 (2006)
Poortmans, J., Arkhipov, V.: Thin Film Solar Cells: Fabrication, Characterization and Applications, vol. 5. Wiley, New York (2006)
Queisser, H.J.: Multiple carrier generation in solar cells. Sol. Energy Mater. Sol. Cells 94(11), 1927–1930 (2010)
Landsberg, P., Nussbaumer, H., Willeke, G.: Band-band impact ionization and solar cell efficiency. J. Appl. Phys. 74(2), 1451–1452 (1993)
Kolodinski, S., Werner, J.H., Wittchen, T., Queisser, H.J.: Quantum efficiencies exceeding unity due to impact ionization in silicon solar cells. Appl. Phys. Lett. 63(17), 2405–2407 (1993)
Brendel, R., Werner, J.H., Queisser, H.J.: Thermodynamic efficiency limits for semiconductor solar cells with carrier multiplication. Sol. Energy Mater. Sol. Cells 41, 419–425 (1996)
De Vos, A., Desoete, B.: On the ideal performance of solar cells with larger-than-unity quantum efficiency. Sol. Energy Mater. Sol. Cells 51(3), 413–424 (1998)
Badescu, V., Landsberg, P.T., De Vos, A., Desoete, B.: Statistical thermodynamic foundation for photovoltaic and photothermal conversion. IV. Solar cells with larger-than-unity quantum efficiency revisited. J. Appl. Phys. 89(4), 2482–2490 (2001)
Werner, J.H., Kolodinski, S., Queisser, H.J.: Novel optimization principles and efficiency limits for semiconductor solar cells. Phys. Rev. Lett. 72(24), 3851 (1994)
Würfel, P.: Solar energy conversion with hot electrons from impact ionisation. Sol. Energy Mater. Sol. Cells 46(1), 43–52 (1997)
Ross, R.T., Nozik, A.J.: Efficiency of hot-carrier solar energy converters. J. Appl. Phys. 53(5), 3813–3818 (1982)
Gorji, N.E., Reggiani, U., Sandrolini, L.: Auger generation effect on the thermodynamic efficiency of Cu (In, Ga) Se 2 thin film solar cells. Thin Solid Films 537, 285–290 (2013)
Kumar, V., Nayfeh, A.: Thin film c-Si solar cell enhanced with impact ionization. In: Modelling Symposium (EMS), 2013 European, pp. 681–684 (2013)
Maes, W., De Meyer, K., Van Overstraeten, R.: Impact ionization in silicon: a review and update. Solid-State Electron. 33(6), 705–718 (1990)
Capasso, F., Willardson, R., Beer, A.: In: Tasang, W.T. (ed.) Semiconductors and semimetals, p. 1986. Academic Press, New York (1985)
Nayfeh, A., Koldyaev, V., Beaud, P., Nagoga, M., Okhonin, S.: A leakage current model for SOI based floating body memory that includes the Poole-Frenkel effect. In: IEEE International SOI Conference, pp. 75–76 (2008)
Synopsys TCAD Tools: User Guide for Sentaurus. In. (2010)
Butcher, P.N., March, N.H., Tosi, M.P.: Crystalline Semiconducting Materials and Devices. Springer, New York (1986)
Dziewior, J., Schmid, W.: Auger coefficients for highly doped and highly excited silicon. Appl. Phys. Lett. 31(5), 346–348 (1977)
Van Overstraeten, R., Mertens, R.: Fundamental study of recombination in solar cells with highly doped substrates. Comm. Eur. Commun. 83 (1982)
Altermatt, P.: Silicon solar cells. In: Piprek, J. (ed.) Optoelectronic Devices, pp. 313–341. Springer, New York (2005)
Reference solar spectral Irradiance:Air Mass 1.5. http://rredc.nrel.gov/solar/spectra/am1.5/. Accessed 02 Dec 2014
SOPRA N&K Database. http://refractiveindex.info/. Accessed 02 Dec 2014
Zhao, J., Green, M.A.: Optimized antireflection coatings for high-efficiency silicon solar cells. IEEE Trans. Electron Devices 38(8), 1925–1934 (1991)
Nelson, J.: The Physics of Solar Cells. Imperial College, London (2004)
Hadi, S.A., Hashemi, P., Nayfeh, A., Hoyt, J.: Thin film a-Si/c-Si1-xGex/c-Si heterojunction solar cells: design and material quality requirements. ECS Trans. 41(4), 3–14 (2011)
Hadi, S.A., Hashemi, P., DiLello, N., Polyzoeva, E., Nayfeh, A., Hoyt, J.L.: Effect of germanium fraction on the effective minority carrier lifetime in thin film amorphous-Si/crystalline-Si1xGex/crystalline-Si heterojunction solar cells. AIP Adv. 3(5), 052119 (2013)
Hadi, S.A., Hashemi, P., DiLello, N., Polyzoeva, E., Nayfeh, A., Hoyt, J.L.: Thin-film Si 1—xGex HIT solar cells. Sol. Energy 103, 154–159 (2014)
Kumar, V., Nayfeh, A.: Design of Impact Ionization enhanced thin film c-Si HIT solar cells. In: IEEE 40th Photovoltaic Specialist Conference (PVSC), pp. 1059–1063 (2014)
Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices. Wiley, New York (2006)