Tính toán số quỹ đạo của hạt nước và hệ số bám sử dụng tiếp cận Lagrange
Tóm tắt
Từ khóa
#Tiếp cận Lagrange #Hạt siêu lạnh #Phương trình hạt nước #Hệ số bám #Đóng băngTài liệu tham khảo
<li>R. W. Gent, N. P. Dart, and N. P. Dart, “Aircraft icing,” <i>Phil. Trans. R. Soc. A</i>, vol. 358, 2000. https://doi.org/10.1098/rsta.2000.0689</li>
<li>Y. Cao, C. Ma, Q. Zhang, and J. Sherida, “Numerical simulation of ice accretions on an aircraft wing,” <i>Aerospace Sci. and Tech.</i>, vol. 23, issue 1, pp. 296–304, 2012. https://doi.org/10.1016/j.ast.2011.08.004</li>
<li>F. T. Lynch and A. Khodadoust, “Effects of ice accretions on aircraft aerodynamics,” <i>Progress in Aerospace Sciences</i>, vol. 37, issue 8, pp. 669–767, 2001. https://doi.org/10.1016/S0376-0421(01)00018-5</li>
<li>L. Xianglian <i>et al.</i>, “Pitot Tube-Based Icing Detection: Effect of Ice Blocking on Pressure,” <i>Int. J. of Aerospace Eng.</i>, vol. 2020, no. 1, 2020. https://doi.org/10.1155/2020/1902053</li>
<li>Q. Chen and C. Zhou, “Numerical Simulation Study on Predicting the Critical Icing Conditions of Aircraft Pitot Tubes,” <i>Sensors</i>, vol. 24, issue 22, 2024. https://doi.org/10.3390/s24227410</li>
<li>C. Raab and N. Fezans, “Measuring the angle of attack – practical considerations for the development of fault detection residuals,” in <i>34th Congress of the International Council of the Aeronautical Sciences (ICAS)</i>, Florence, Italy, 2024. https://www.icas.org/icas_archive/icas2024/data/papers/icas2024_0156_paper.pdf</li>
<li>R. Meireles, L. Magalhaes, A. Silva, and J. Barata, “Description of a Eulerian-Lagrangian Approach for the Modeling of Cooling Water Droplets,” <i>Aerospace</i>, vol. 8, issue 9, 2021. https://doi.org/10.3390/aerospace8090270</li>
<li>H. Beaugendre, F. Morency, and W. G. Habashi, “FENSAP-ICE’s Three-Dimensional In-Flight Ice Accretion Module: ICE3D,” <i>J. of Aircraft</i>, vol. 40, issue 2, 2003. https://doi.org/10.2514/2.3113</li>
<li>Y. Bourgault, W. G. Habashi, J. Dompierre, Z. Boutanios, and W. Di Bartolomeo, “An Eulerian approach to supercooled droplets impingement calculations,” in <i>35th Aerospace Sciences Meeting and Exhibit</i> (AIAA Paper 97-0176), Reno, USA, 1997. https://doi.org/10.2514/6.1997-176</li>
<li>A. Shad, H. Ahmed, N. Zgheib, S. Balachandar, and S. A. Sherif, “Stokes-dependent droplet collection efficiency on a NACA0012 airfoil from droplet-informed simulations with statistical overloading,” <i>Phil. Trans. R. Soc. A</i>, vol. 383, 2025. https://doi.org/10.1098/rsta.2024.0368</li>
<li>L. Xie, P. Li, H. Chen, and H. Liu, “Robust and efficient prediction of the collection efficiency in icing accretion simulation for 3D complex geometries using the Lagrangian approach I: an adaptive interpolation method based on the restricted radial basis functions,” <i>Int. J. Heat and Mass Transfer</i>, vol. 150, 2020. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119290</li>
<li>C. S. Bidwell and M. G. Potapczuk, “Users manual for the NASA Lewis Three-Dimensional Ice Accretion Code (LEWICE 3D),” research project report, NASA, USA, NASA-TM-105974, 1993. https://ntrs.nasa.gov/citations/19940017117</li>
<li>R. W. Gent, “TRAJICE 2 – A combined water droplet trajectory and ice accretion prediction program for aerofoils,” research project report, RAE, England, RAE TR 90054, 1990.</li>
<li>W. B. Wright, “DRA/NASA/ONERA Collaboration on Icing Research. Part II—Prediction of Airfoil Ice Accretion,” research project report, NASA, USA, NASA CR 202349, 1997. https://ntrs.nasa.gov/citations/19970023937</li>
<li>H. Beaugendre, F. Morency, and W. G. Habashi, “FENSAP-ICE’s Three-Dimensional In-Flight Ice Accretion Module: ICE3D,” <i>J. of Aircraft</i>, vol. 40, no. 2, 2003. https://doi.org/10.2514/2.3113</li>
<li>S. Ozgen and E. B. Saribel, “Modeling of Supercooled Large Droplet Physics in Aircraft Icing,” <i>Aerospace</i>, vol. 11, no. 10, 2024. https://doi.org/10.3390/aerospace11100797</li>
<li>H. Han, Z. Yin, Y. Ning, and H. Liu, “Development of a 3D Eulerian/Lagrangian Aircraft Icing Simulation Solver Based on OpenFOAM,” <i>Entropy</i>, vol. 24, no. 10, 2022. https://doi.org/10.3390/e24101365</li>
<li>J. M. Hospers, “Eulerian method for super-cooled large-droplet ice-accretion on aircraft wings,” Ph.D. dissertation, Faculty of Engineering Technology, University of Twente, Netherlands, 2013. https://doi.org/10.3990/1.9789036536172</li>
<li>J. D. Freed, “A Technical Note: Two-Step PECE Methods for Approximating Solutions To First- and Second-Order ODEs,” research project report, Cornell University, USA, 2017. https://doi.org/10.48550/arXiv.1707.02125</li>
<li>J. D. Anderson, <i>Fundamentals of Aerodynamics</i>, 6th ed. NJ: McGraw-Hill Education, 2017.</li>
<li>X. Tong and E. Luke, “Eulerian Simulations of Icing Collection Efficiency Using a Singularity Diffusion Model,” in <i>43rd AIAA Aerospace Sciences Meeting and Exhibit</i> (AIAA 2005-1246), Reno, USA, 2005. https://doi.org/10.2514/6.2005-1246</li>
<li>Y. Bourgault, Z. Boutanious, and W. G. Habashi, “Three-dimensional Eulerian Approach to Droplet Impingement Simulation Using FENSAP–ICE, Part 1: Model, Algorithm, and Validation,” <i>J. of Aircraft</i>, vol. 37, no. 1, 2000. https://doi.org/10.2514/2.2566</li>
