Syzygies of Hibi Rings
Acta Mathematica Vietnamica - 2015
Tóm tắt
We survey recent results on resolutions of Hibi rings.
Từ khóa
Tài liệu tham khảo
Aramova, A., Herzog, J., Hibi, T.: Finite lattices and lexicographic Gröbner bases. Eur. J. Comb 21, 431–439 (2000)
Birkhoff, G.: Lattice Theory. 3rd ed, vol. 25. RI, Providence (1967)
Björner, A., Garsia, A., Stanley, R. An introduction to the theory of Cohen-Macaulay partially ordered sets. In: Rival, I. (ed.) : Ordered Sets, pp 583–615. Reidel, Dordrecht/Boston/London (1982)
Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge University Press, Revised Ed. (1998)
Bruns, W., Herzog, J.: Semigroup rings and simplicial complexes. J. Pure Appl. Algebra 122, 185–208 (1997)
Eisenbud, D.: Introduction to algebras with straightening laws. In: “Ring theory and algebra”, III: Proceedings of the third Oklahoma Conference, vol. 55, pp 243–268. Lecture Notes in Pure and Applied Mathematics (1980)
Eisenbud, D.: Commutative algebra with a view toward algebraic geometry. Grad Texts in Math, vol. 150. Springer, Berlin (1995)
Ene, V., Herzog, J.: Gröbner bases in commutative algebra. Grad. Stud. Math., vol. 130. Am. Math. Soc., Providence (2012)
Ene, V., Herzog, J., Hibi, T.: Linear flags and Koszul filtrations. to appear in Kyoto J. Math.
Ene, V., Herzog, J., Hibi, T.: Linearly related polyominoes. preprint. arXiv: 1403.4349
Ene, V., Herzog, J., Hibi, T., Saeedi Madani, S.: Pseudo-Gorenstein and level Hibi rings. arXiv:1405.6963
Ene, V., Herzog, J., Saeedi Madani, S.: A note on the regularity of Hibi rings. arXiv:2554.1404
Ene, V., Herzog, J., Mohammadi, F.: Monomial ideals and toric rings of Hibi type arising from a finite poset. Eur. J. Comb. 32, 404–421 (2011)
Ene, V., Hibi, T.: The join-meet ideal of a finite lattice. J. Commut. Algebra 5(2), 209–230 (2013)
Ene, V., Qureshi, A.A., Rauf, A.: Regularity of join-meet ideals of distributive lattices. Electron. J. Combin. 20(3), 20 (2013)
Hashimoto, M., Hibi, T., Noma, A.: Divisor class groups of affine semigroup rings associated with distributive lattices. J. Algebra 149, 352–357 (1992)
Herzog, J. Finite free resolutions. In: Cojocaru, S., Pfister, G. , Ufnrovschi, V. (eds.) : Computational Commutative and Non-Commutative Algebraic Geometry. NATO Science Series, Series III: Computer and System Sciences-vol. 196, pp. 118–145 (2005). IOS Press
Herzog, J., Hibi, T.: Monomial ideals. Grad Texts in Math, vol. 260. Springer, Berlin (2010)
Herzog, J., Hibi, T.: Finite lattices and Gröbner bases. Math. Nachr. 285, 1969–1973 (2012)
Herzog, J., Hibi, T., Restuccia, G.: Strongly Koszul algebras. Math. Scand. 86(2), 161–178 (2000)
Herzog, J., Srinivasan, H.: A note on the subadditivity problem for maximal shifts in free resolutions. to appear in MSRI Proc. arXiv: 1303.6214
Hibi, T. Distributive lattices, affine semigroup rings and algebras with straightening laws. In: Nagata, M., Matsumura, H. (eds.) : Commutative Algebra and Combinatorics, vol. 11, pp 93–109. Adv. Stud. Pure Math, North–Holland, Amsterdam (1987)
Hibi, T.: Level rings and algebras with straightening laws. J. Algebra 117, 343–362 (1988)
Hochster, M.: Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes. Ann. of Math. 96(2), 318–337 (1972)
Kumar, C., Singh, P., Kumar, A.: Nearly extremal Cohen-Macaulay and Gorenstein algebras. Bull. Austral. Math. Soc. 75, 211–220 (2007)
Miyazaki, M.: A sufficient condition for a Hibi ring to be level and levelness of Schubert cycles. Comm. Algebra 35, 2894–2900 (2007)
Peeva, I.: Graded syzygies. Algebr Appl., vol. 14. Springer, New York (2011)
Qureshi, A.: Ideals generated by 2-minors, collections of cells and stack polyominoes. J. Algebra 357, 279–303 (2012)
Qureshi, A.: Indispensable Hibi relations and Gröbner bases. to appear in Algebra Colloq.
Sally, J.: Cohen-Macaulay rings of maximal embedding dimension. J. Algebra 56, 168–183 (1979)
Schenzel, P.: Uber die freien Auflösungen extremaler Cohen-Macaulay Ringe. J. Algebra 64, 93–101 (1980)
Stanley, R.P. Cohen-Macaulay Complexes. In: Aigner, M. (ed.) : Higher Combinatorics. NATO Advanced Study Institute Series, pp 51–62. Reidel, Dordrecht/Boston (1977)
Stanley, R.P.: Hilbert functions of graded algebras. Adv. Math. 28, 57–83 (1978)
Stanley, R.P.: Combinatorics and Commutative Algebra. Progress in Mathematics. 2nd edition, vol. 41. Birkhäuser, Boston/Basel/Stuttgart (1996)
Stanley, R.P.: Enumerative combinatorics. 2nd ed, vol. 1. Cambridge University Press, Cambridge (1996)
Wagner, D.G.: Singularities of toric varieties associated with finite distributive lattices. J. Algebraic Combin. 5, 149–165 (1996)