Systems-level engineering and characterisation of Clostridium autoethanogenum through heterologous production of poly-3-hydroxybutyrate (PHB)
Tài liệu tham khảo
Abrini, 1994, Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide, Arch. Microbiol., 161, 345, 10.1007/BF00303591
Abubackar, 2012, Biological conversion of carbon monoxide to ethanol: effect of pH, gas pressure, reducing agent and yeast extract, Bioresour. Technol., 114, 518, 10.1016/j.biortech.2012.03.027
Abubackar, 2015, Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid, Bioresour. Technol., 186, 122, 10.1016/j.biortech.2015.02.113
Abubackar, 2016, Impact of cyclic pH shifts on carbon monoxide fermentation to ethanol by Clostridium autoethanogenum, Fuel, 178, 56, 10.1016/j.fuel.2016.03.048
Amador-Noguez, 2011, Metabolome remodeling during the acidogenic-solventogenic transition in Clostridium acetobutylicum, Appl. Environ. Microbiol., 77, 7984, 10.1128/AEM.05374-11
Angenent, 2016, Chain elongation with reactor microbiomes: open-culture biotechnology to produce biochemicals, Environ. Sci. Technol., 50, 2796, 10.1021/acs.est.5b04847
Bengelsdorf, 2016, Industrial acetogenic biocatalysts: a comparative metabolic and genomic analysis, Front. Microbiol., 7, 1, 10.3389/fmicb.2016.01036
Bertsch, 2015, Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria, Biotechnol. Biofuels, 8, 210, 10.1186/s13068-015-0393-x
Biegel, 2011, Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes, Cell. Mol. Life Sci., 68, 613, 10.1007/s00018-010-0555-8
Brown, 2014, Comparison of single-molecule sequencing and hybrid approaches for finishing the genome of Clostridium autoethanogenum and analysis of CRISPR systems in industrial relevant Clostridia, Biotechnol. Biofuels, 7, 40, 10.1186/1754-6834-7-40
Claassens, 2016, Harnessing the power of microbial autotrophy, Nat. Rev. Microbiol., 14, 692, 10.1038/nrmicro.2016.130
Cotter, 2009, Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas, Enzym. Microb. Technol., 44, 281, 10.1016/j.enzmictec.2008.11.002
Cueto-Rojas, 2015, Thermodynamics-based design of microbial cell factories for anaerobic product formation, Trends Biotechnol., 33, 534, 10.1016/j.tibtech.2015.06.010
Daniell, 2012, Commercial biomass syngas fermentation, Energies, 5, 5372, 10.3390/en5125372
De Livera, 2012, Normalizing and integrating metabolomics data, Anal. Chem., 84, 10768, 10.1021/ac302748b
De Livera, 2013, Statistical analysis of metabolomics data, 291
Diender, 2016, Production of medium-chain fatty acids and higher alcohols by a synthetic co-culture grown on carbon monoxide or syngas, Biotechnol. Biofuels, 9, 82, 10.1186/s13068-016-0495-0
Drake, 2006, Acetogenic prokaryotes, 354
Du, 2001, Continuous production of poly-3-hydroxybutyrate by Ralstonia eutropha in a two-stage culture system, J. Biotechnol., 88, 59, 10.1016/S0168-1656(01)00266-8
Friedlingstein, 2014, Persistent growth of CO2 emissions and implications for reaching climate targets, Nat. Geosci., 7, 709, 10.1038/ngeo2248
Heap, 2007, The ClosTron: a universal gene knock-out system for the genus Clostridium, J. Microbiol. Methods, 70, 452, 10.1016/j.mimet.2007.05.021
Heap, 2009, A modular system for Clostridium shuttle plasmids, J. Microbiol. Methods, 78, 79, 10.1016/j.mimet.2009.05.004
Heap, 2010, The ClosTron: mutagenesis in clostridium refined and streamlined, J. Microbiol. Methods, 80, 49, 10.1016/j.mimet.2009.10.018
Hess, 2016, Occurrence of ferredoxin:NAD+ oxidoreductase activity and its ion specificity in several Gram-positive and Gram-negative bacteria, PeerJ, 4, e1515, 10.7717/peerj.1515
Hong, 2003, In silico prediction and validation of the importance of the Entner-Doudoroff pathway in poly(3-hydroxybutyrate) production by metabolically engineered Escherichia coli, Biotechnol. Bioeng., 83, 854, 10.1002/bit.10733
Hu, 2016, Integrated bioprocess for conversion of gaseous substrates to liquids, Proc. Natl. Acad. Sci. USA, 113, 3773, 10.1073/pnas.1516867113
Huang, 2016, CRISPR/Cas9-based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium, ACS Synth. Biol., 5, 1355, 10.1021/acssynbio.6b00044
Islam, 2015, Investigating Moorella thermoacetica metabolism with a genome-scale constraint-based metabolic model, Integr. Biol., 7, 869, 10.1039/C5IB00095E
Karr, 1983, Analysis of poly-beta-hydroxybutyrate in Rhizobium japonicum bacteroids by ion-exclusion high-pressure liquid chromatography and UV detection, Appl. Environ. Microbiol., 46, 1339, 10.1128/AEM.46.6.1339-1344.1983
Klasson, 1993, Biological conversion of coal and coal-derived synthesis gas, Fuel, 72, 1673, 10.1016/0016-2361(93)90354-5
Köpke, 2010, Clostridium ljungdahlii represents a microbial production platform based on syngas, Proc. Natl. Acad. Sci. USA, 107, 13087, 10.1073/pnas.1004716107
Koyama, 1995, Continuous production of Poly(3-Hydroxynutyrate-Co-3-Hydroxyvalerate) by Alcaligenes eutrophus, Biotechnol. Lett., 17, 281, 10.1007/BF01190637
Kracke, 2016, Redox dependent metabolic shift in Clostridium autoethanogenum by extracellular electron supply, Biotechnol. Biofuels, 1
Kracke, 2018, Balancing cellular redox metabolism in microbial electrosynthesis and electro fermentation – a chance for metabolic engineering, Metab. Eng., 45, 109, 10.1016/j.ymben.2017.12.003
Leang, 2013, A Genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen, Appl. Environ. Microbiol., 79, 1102, 10.1128/AEM.02891-12
Liew, 2016, Gas fermentation – a flexible platform for commercial scale production of low carbon fuels and chemicals from waste and renewable feedstocks, Front. Microbiol., 7, 694, 10.3389/fmicb.2016.00694
Liew, 2017, Metabolic engineering of Clostridium autoethanogenum for selective alcohol production, Metab. Eng., 40, 104, 10.1016/j.ymben.2017.01.007
Livera, A.M.de., Bowne, J.B., 2014. Metabolomics: analysis of Metabolomics Data. R package.
Marcellin, 2016, Low carbon fuels and commodity chemicals from waste gases – systematic approach to understand energy metabolism in a model acetogen, Green Chem., 18, 3020, 10.1039/C5GC02708J
Martin, 2015, Traits of selected Clostridium strains for syngas fermentation to ethanol, Biotechnol. Bioeng., 113, 531, 10.1002/bit.25827
McGlade, 2015, The geographical distribution of fossil fuels unused when limiting global warming to 2 °C, Nature, 517, 187, 10.1038/nature14016
Molitor, 2016, Carbon recovery by fermentation of CO-rich off gases - turning steel mills into biorefineries, Bioresour. Technol., 215, 386, 10.1016/j.biortech.2016.03.094
Molitor, 2017, Overcoming the energetic limitations of syngas fermentation, Curr. Opin. Chem. Biol., 41, 84, 10.1016/j.cbpa.2017.10.003
Moskowitz, 1969, Metabolism of Poly-β-hydroxybutyrate. II. Enzymatic synthesis of D-(-)-β-Hydroxybutyryl Coenzyme A by an Enoyl Hydrase from Rhodospirillum rubrum, Biochemistry, 8, 2748, 10.1021/bi00835a009
Müller, 2013, Engineering of Ralstonia eutropha H16 for autotrophic and heterotrophic production of methyl ketones, Appl. Environ. Microbiol., 79, 4433, 10.1128/AEM.00973-13
Munasinghe, 2010, Biomass-derived syngas fermentation into biofuels, Bioresour. Technol., 101, 5013, 10.1016/j.biortech.2009.12.098
Nagarajan, 2013, Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii, Microb. Cell Fact., 12, 118, 10.1186/1475-2859-12-118
Park, 1996, Metabolic characteristics of isocitrate dehydrogenase leaky mutant of Alcaligenes eutrophus and its utilization for poly-B-hydroxybutyrate production, J. Ferment. Bioeng., 81, 197, 10.1016/0922-338X(96)82208-2
Peña, 2014, Biotechnological strategies to improve production of microbial poly-(3-hydroxybutyrate): a review of recent research work, Microb. Biotechnol., 7, 278, 10.1111/1751-7915.12129
Peoples, 1989, Poly-β-hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16. characterization of the genes encoding β-ketothiolase and acetoacetyl-CoA reductase, J. Biol. Chem., 264, 15293, 10.1016/S0021-9258(19)84824-X
Peoples, 1989, Poly-β-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC), J. Biol. Chem., 264, 15298, 10.1016/S0021-9258(19)84825-1
Poblete-castro, 2012, The metabolic response of P. putida KT2442 producing high levels of polyhydroxyalkanoate under single- and multiple-nutrient-limited growth: highlights from a multi-level omics approach, Microb. Cell Fact., 11, 34, 10.1186/1475-2859-11-34
Ragsdale, 2008, Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation, Biochim. Biophys. Acta, 1784, 1873, 10.1016/j.bbapap.2008.08.012
Ramsay, 1990, Production of poly-(beta-hydroxybutyric-co-beta-hydroxyvaleric) acids, Appl. Environ. Microbiol., 56, 2093, 10.1128/AEM.56.7.2093-2098.1990
Richter, 2016, A narrow pH range supports butanol, hexanol, and octanol production from syngas in a continuous co-culture of Clostridium ljungdahlii and Clostridium kluyveri with in-line product extraction, Front. Microbiol., 7, 1773, 10.3389/fmicb.2016.01773
Schuchmann, 2014, Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria, Nat. Rev. Microbiol., 12, 809, 10.1038/nrmicro3365
de Souza Pinto Lemgruber, 2018, Quantitative analysis of tetrahydrofolate metabolites from Clostridium autoethanogenum, Metabolomics, 14, 35, 10.1007/s11306-018-1331-2
Steinbüchel, 1991, Physiology and molecular genetics of poly(beta-hydroxyalkanoic acid) synthesis in Alcaligenes eutrophus, Mol. Microbiol., 5, 535, 10.1111/j.1365-2958.1991.tb00725.x
Tremblay, 2012, The Rnf complex of Clostridium ljungdahlii Is a proton-translocating ferredoxin:NAD? Oxidoreductase essential for autotrophic growth, MBio, 4, e00406, 10.1128/mBio.00406-12
Valgepea, 2017, Maintenance of ATP homeostasis triggers metabolic shifts in gas-fermenting acetogens, Cell Syst., 4, 505, 10.1016/j.cels.2017.04.008
Valgepea, 2017, Arginine deiminase pathway provides ATP and boosts growth of the gas-fermenting acetogen Clostridium autoethanogenum, Metab. Eng., 41, 202, 10.1016/j.ymben.2017.04.007
Valgepea, 2018, H2 drives metabolic rearrangements in gas-fermenting Clostridium autoethanogenum, Biotechnol. Biofuels, 11, 55, 10.1186/s13068-018-1052-9
Vandamme, 2004, Taxonomy of the genus Cupriavidus: a tale of lost and found, Int. J. Syst. Evol. Microbiol., 54, 2285, 10.1099/ijs.0.63247-0
Wang, 2013, NADP-Specific electron-bifurcating [FeFe]-hydrogenase in a functional complex with formate dehydrogenase in clostridium autoethanogenum grown on CO, J. Bacteriol., 195, 4373, 10.1128/JB.00678-13
Wood, 1991, Life with CO or CO2 and H2 as a source of carbon and energy, FASEB J., 5, 156, 10.1096/fasebj.5.2.1900793
Woolston, 2018, Rediverting carbon flux in Clostridium ljungdahlii using CRISPR interference (CRISPRi), Metab. Eng., 48, 243, 10.1016/j.ymben.2018.06.006