Systems-level engineering and characterisation of Clostridium autoethanogenum through heterologous production of poly-3-hydroxybutyrate (PHB)

Metabolic Engineering - Tập 53 - Trang 14-23 - 2019
Renato de Souza Pinto Lemgruber1, Kaspar Valgepea1, Ryan Tappel2, James B. Behrendorff2, Robin William Palfreyman1, Manuel Plan1,3, Mark P. Hodson1,3, Séan Dennis Simpson2, Lars K. Nielsen1,3, Michael Köpke2, Esteban Marcellin1,3
1Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
2LanzaTech Inc., Skokie, IL 60077, USA
3Metabolomics Australia, AIBN, The University of Queensland, Brisbane, Australia

Tài liệu tham khảo

Abrini, 1994, Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide, Arch. Microbiol., 161, 345, 10.1007/BF00303591 Abubackar, 2012, Biological conversion of carbon monoxide to ethanol: effect of pH, gas pressure, reducing agent and yeast extract, Bioresour. Technol., 114, 518, 10.1016/j.biortech.2012.03.027 Abubackar, 2015, Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid, Bioresour. Technol., 186, 122, 10.1016/j.biortech.2015.02.113 Abubackar, 2016, Impact of cyclic pH shifts on carbon monoxide fermentation to ethanol by Clostridium autoethanogenum, Fuel, 178, 56, 10.1016/j.fuel.2016.03.048 Amador-Noguez, 2011, Metabolome remodeling during the acidogenic-solventogenic transition in Clostridium acetobutylicum, Appl. Environ. Microbiol., 77, 7984, 10.1128/AEM.05374-11 Angenent, 2016, Chain elongation with reactor microbiomes: open-culture biotechnology to produce biochemicals, Environ. Sci. Technol., 50, 2796, 10.1021/acs.est.5b04847 Bengelsdorf, 2016, Industrial acetogenic biocatalysts: a comparative metabolic and genomic analysis, Front. Microbiol., 7, 1, 10.3389/fmicb.2016.01036 Bertsch, 2015, Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria, Biotechnol. Biofuels, 8, 210, 10.1186/s13068-015-0393-x Biegel, 2011, Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes, Cell. Mol. Life Sci., 68, 613, 10.1007/s00018-010-0555-8 Brown, 2014, Comparison of single-molecule sequencing and hybrid approaches for finishing the genome of Clostridium autoethanogenum and analysis of CRISPR systems in industrial relevant Clostridia, Biotechnol. Biofuels, 7, 40, 10.1186/1754-6834-7-40 Claassens, 2016, Harnessing the power of microbial autotrophy, Nat. Rev. Microbiol., 14, 692, 10.1038/nrmicro.2016.130 Cotter, 2009, Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas, Enzym. Microb. Technol., 44, 281, 10.1016/j.enzmictec.2008.11.002 Cueto-Rojas, 2015, Thermodynamics-based design of microbial cell factories for anaerobic product formation, Trends Biotechnol., 33, 534, 10.1016/j.tibtech.2015.06.010 Daniell, 2012, Commercial biomass syngas fermentation, Energies, 5, 5372, 10.3390/en5125372 De Livera, 2012, Normalizing and integrating metabolomics data, Anal. Chem., 84, 10768, 10.1021/ac302748b De Livera, 2013, Statistical analysis of metabolomics data, 291 Diender, 2016, Production of medium-chain fatty acids and higher alcohols by a synthetic co-culture grown on carbon monoxide or syngas, Biotechnol. Biofuels, 9, 82, 10.1186/s13068-016-0495-0 Drake, 2006, Acetogenic prokaryotes, 354 Du, 2001, Continuous production of poly-3-hydroxybutyrate by Ralstonia eutropha in a two-stage culture system, J. Biotechnol., 88, 59, 10.1016/S0168-1656(01)00266-8 Friedlingstein, 2014, Persistent growth of CO2 emissions and implications for reaching climate targets, Nat. Geosci., 7, 709, 10.1038/ngeo2248 Heap, 2007, The ClosTron: a universal gene knock-out system for the genus Clostridium, J. Microbiol. Methods, 70, 452, 10.1016/j.mimet.2007.05.021 Heap, 2009, A modular system for Clostridium shuttle plasmids, J. Microbiol. Methods, 78, 79, 10.1016/j.mimet.2009.05.004 Heap, 2010, The ClosTron: mutagenesis in clostridium refined and streamlined, J. Microbiol. Methods, 80, 49, 10.1016/j.mimet.2009.10.018 Hess, 2016, Occurrence of ferredoxin:NAD+ oxidoreductase activity and its ion specificity in several Gram-positive and Gram-negative bacteria, PeerJ, 4, e1515, 10.7717/peerj.1515 Hong, 2003, In silico prediction and validation of the importance of the Entner-Doudoroff pathway in poly(3-hydroxybutyrate) production by metabolically engineered Escherichia coli, Biotechnol. Bioeng., 83, 854, 10.1002/bit.10733 Hu, 2016, Integrated bioprocess for conversion of gaseous substrates to liquids, Proc. Natl. Acad. Sci. USA, 113, 3773, 10.1073/pnas.1516867113 Huang, 2016, CRISPR/Cas9-based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium, ACS Synth. Biol., 5, 1355, 10.1021/acssynbio.6b00044 Islam, 2015, Investigating Moorella thermoacetica metabolism with a genome-scale constraint-based metabolic model, Integr. Biol., 7, 869, 10.1039/C5IB00095E Karr, 1983, Analysis of poly-beta-hydroxybutyrate in Rhizobium japonicum bacteroids by ion-exclusion high-pressure liquid chromatography and UV detection, Appl. Environ. Microbiol., 46, 1339, 10.1128/AEM.46.6.1339-1344.1983 Klasson, 1993, Biological conversion of coal and coal-derived synthesis gas, Fuel, 72, 1673, 10.1016/0016-2361(93)90354-5 Köpke, 2010, Clostridium ljungdahlii represents a microbial production platform based on syngas, Proc. Natl. Acad. Sci. USA, 107, 13087, 10.1073/pnas.1004716107 Koyama, 1995, Continuous production of Poly(3-Hydroxynutyrate-Co-3-Hydroxyvalerate) by Alcaligenes eutrophus, Biotechnol. Lett., 17, 281, 10.1007/BF01190637 Kracke, 2016, Redox dependent metabolic shift in Clostridium autoethanogenum by extracellular electron supply, Biotechnol. Biofuels, 1 Kracke, 2018, Balancing cellular redox metabolism in microbial electrosynthesis and electro fermentation – a chance for metabolic engineering, Metab. Eng., 45, 109, 10.1016/j.ymben.2017.12.003 Leang, 2013, A Genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen, Appl. Environ. Microbiol., 79, 1102, 10.1128/AEM.02891-12 Liew, 2016, Gas fermentation – a flexible platform for commercial scale production of low carbon fuels and chemicals from waste and renewable feedstocks, Front. Microbiol., 7, 694, 10.3389/fmicb.2016.00694 Liew, 2017, Metabolic engineering of Clostridium autoethanogenum for selective alcohol production, Metab. Eng., 40, 104, 10.1016/j.ymben.2017.01.007 Livera, A.M.de., Bowne, J.B., 2014. Metabolomics: analysis of Metabolomics Data. R package. Marcellin, 2016, Low carbon fuels and commodity chemicals from waste gases – systematic approach to understand energy metabolism in a model acetogen, Green Chem., 18, 3020, 10.1039/C5GC02708J Martin, 2015, Traits of selected Clostridium strains for syngas fermentation to ethanol, Biotechnol. Bioeng., 113, 531, 10.1002/bit.25827 McGlade, 2015, The geographical distribution of fossil fuels unused when limiting global warming to 2 °C, Nature, 517, 187, 10.1038/nature14016 Molitor, 2016, Carbon recovery by fermentation of CO-rich off gases - turning steel mills into biorefineries, Bioresour. Technol., 215, 386, 10.1016/j.biortech.2016.03.094 Molitor, 2017, Overcoming the energetic limitations of syngas fermentation, Curr. Opin. Chem. Biol., 41, 84, 10.1016/j.cbpa.2017.10.003 Moskowitz, 1969, Metabolism of Poly-β-hydroxybutyrate. II. Enzymatic synthesis of D-(-)-β-Hydroxybutyryl Coenzyme A by an Enoyl Hydrase from Rhodospirillum rubrum, Biochemistry, 8, 2748, 10.1021/bi00835a009 Müller, 2013, Engineering of Ralstonia eutropha H16 for autotrophic and heterotrophic production of methyl ketones, Appl. Environ. Microbiol., 79, 4433, 10.1128/AEM.00973-13 Munasinghe, 2010, Biomass-derived syngas fermentation into biofuels, Bioresour. Technol., 101, 5013, 10.1016/j.biortech.2009.12.098 Nagarajan, 2013, Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii, Microb. Cell Fact., 12, 118, 10.1186/1475-2859-12-118 Park, 1996, Metabolic characteristics of isocitrate dehydrogenase leaky mutant of Alcaligenes eutrophus and its utilization for poly-B-hydroxybutyrate production, J. Ferment. Bioeng., 81, 197, 10.1016/0922-338X(96)82208-2 Peña, 2014, Biotechnological strategies to improve production of microbial poly-(3-hydroxybutyrate): a review of recent research work, Microb. Biotechnol., 7, 278, 10.1111/1751-7915.12129 Peoples, 1989, Poly-β-hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16. characterization of the genes encoding β-ketothiolase and acetoacetyl-CoA reductase, J. Biol. Chem., 264, 15293, 10.1016/S0021-9258(19)84824-X Peoples, 1989, Poly-β-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC), J. Biol. Chem., 264, 15298, 10.1016/S0021-9258(19)84825-1 Poblete-castro, 2012, The metabolic response of P. putida KT2442 producing high levels of polyhydroxyalkanoate under single- and multiple-nutrient-limited growth: highlights from a multi-level omics approach, Microb. Cell Fact., 11, 34, 10.1186/1475-2859-11-34 Ragsdale, 2008, Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation, Biochim. Biophys. Acta, 1784, 1873, 10.1016/j.bbapap.2008.08.012 Ramsay, 1990, Production of poly-(beta-hydroxybutyric-co-beta-hydroxyvaleric) acids, Appl. Environ. Microbiol., 56, 2093, 10.1128/AEM.56.7.2093-2098.1990 Richter, 2016, A narrow pH range supports butanol, hexanol, and octanol production from syngas in a continuous co-culture of Clostridium ljungdahlii and Clostridium kluyveri with in-line product extraction, Front. Microbiol., 7, 1773, 10.3389/fmicb.2016.01773 Schuchmann, 2014, Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria, Nat. Rev. Microbiol., 12, 809, 10.1038/nrmicro3365 de Souza Pinto Lemgruber, 2018, Quantitative analysis of tetrahydrofolate metabolites from Clostridium autoethanogenum, Metabolomics, 14, 35, 10.1007/s11306-018-1331-2 Steinbüchel, 1991, Physiology and molecular genetics of poly(beta-hydroxyalkanoic acid) synthesis in Alcaligenes eutrophus, Mol. Microbiol., 5, 535, 10.1111/j.1365-2958.1991.tb00725.x Tremblay, 2012, The Rnf complex of Clostridium ljungdahlii Is a proton-translocating ferredoxin:NAD? Oxidoreductase essential for autotrophic growth, MBio, 4, e00406, 10.1128/mBio.00406-12 Valgepea, 2017, Maintenance of ATP homeostasis triggers metabolic shifts in gas-fermenting acetogens, Cell Syst., 4, 505, 10.1016/j.cels.2017.04.008 Valgepea, 2017, Arginine deiminase pathway provides ATP and boosts growth of the gas-fermenting acetogen Clostridium autoethanogenum, Metab. Eng., 41, 202, 10.1016/j.ymben.2017.04.007 Valgepea, 2018, H2 drives metabolic rearrangements in gas-fermenting Clostridium autoethanogenum, Biotechnol. Biofuels, 11, 55, 10.1186/s13068-018-1052-9 Vandamme, 2004, Taxonomy of the genus Cupriavidus: a tale of lost and found, Int. J. Syst. Evol. Microbiol., 54, 2285, 10.1099/ijs.0.63247-0 Wang, 2013, NADP-Specific electron-bifurcating [FeFe]-hydrogenase in a functional complex with formate dehydrogenase in clostridium autoethanogenum grown on CO, J. Bacteriol., 195, 4373, 10.1128/JB.00678-13 Wood, 1991, Life with CO or CO2 and H2 as a source of carbon and energy, FASEB J., 5, 156, 10.1096/fasebj.5.2.1900793 Woolston, 2018, Rediverting carbon flux in Clostridium ljungdahlii using CRISPR interference (CRISPRi), Metab. Eng., 48, 243, 10.1016/j.ymben.2018.06.006