Systems biology: experimental design

FEBS Journal - Tập 276 Số 4 - Trang 923-942 - 2009
Clemens Kreutz1, Jens Timmer1
1Physics Department; University of Freiburg; Germany

Tóm tắt

Experimental design has a long tradition in statistics, engineering and life sciences, dating back to the beginning of the last century when optimal designs for industrial and agricultural trials were considered. In cell biology, the use of mathematical modeling approaches raises new demands on experimental planning. A maximum informative investigation of the dynamic behavior of cellular systems is achieved by an optimal combination of stimulations and observations over time. In this minireview, the existing approaches concerning this optimization for parameter estimation and model discrimination are summarized. Furthermore, the relevant classical aspects of experimental design, such as randomization, replication and confounding, are reviewed.

Từ khóa


Tài liệu tham khảo

10.1016/S0098-1354(00)00328-8

Montgomery DC, 1991, Design and Analysis of Experiments

Mead R, 1988, The Design of Experiments: Statistical Principles for Practical Applications

10.1093/bioinformatics/18.12.1609

10.1038/ng1031

10.1111/j.0006-341X.2003.00096.x

10.1093/biostatistics/2.2.183

10.1017/S0016672301005055

10.2144/mar03simon

10.1038/nbt1315

10.2144/96211rr05

10.2144/99261rv01

10.1016/S0301-472X(02)00806-8

Ideker TE, 2000, Pacific Symposium on Biocomputing, 305

10.1142/9789812701626_0025

10.1093/bioinformatics/bth337

VatchevaI BernardO de JongH&MarsN(2006)Experiment selection for the discrimination of semi‐quantitative models of dynamical systems. Technical report Institute National de Recherche en Informatique et en Automatique.170 472–506.

Yoo C, 2003, A computer‐based microarray experiment design‐system for gene‐regulation pathway discovery, AMIA Annu Symp Proc, 733

Atkinson A, 2000, Optimum Design 2000

10.2307/1402599

10.2307/2343755

10.1214/ss/1177009939

10.2307/2532438

DetteH MelasVB&StrigulN(2003)Design of experiments for microbiological models. Technical report Ruhr University Bochum Bochum.

10.1055/s-0038-1634118

Kirk R, 1989, Experimental Design: Procedures for the Behavioral Science

Goulden CH, 1956, Methods of Statistical Analysis

10.1146/annurev.publhealth.22.1.189

10.1080/00401706.1996.10484545

Bailey RA, 1992, Construction of trend resistant factorial designs, Stat Sin, 2, 393

Fisher RA, 1950, Statistical Methods for Research Workers

10.1111/j.1742-4658.2005.05037.x

10.1049/ip-syb:20050044

10.1073/pnas.0500607102

10.1017/CBO9780511806384

Cohen J, 1988, Statistical Power Analysis for the Behavioral Sciences

10.1002/sim.1335

10.1148/radiol.2272012051

10.1186/cc1521

Cilek JE, 1997, Pseudoreplication: what does it mean, and how does it relate to biological experiments, J Am Mosq Control Assoc, 13, 102

10.2307/1942661

Balsa‐Canto E, 1998, Dynamic Optimization of Bioprocesses: Deterministic and Stochastic Strategies

10.1016/j.jbiotec.2005.02.013

10.1016/S0959-1524(01)00020-8

10.1007/BF02431915

10.1002/aic.690350206

10.1021/ie0611406

10.1196/annals.1407.007

10.1101/gr.1226004

Chen BH, 2003, Proceedings Foundations of Computer‐Aided Process Operations, 455

10.1021/bp00029a005

10.1016/j.biosystems.2004.03.007

10.1177/0037549703040943

10.1198/016214503000000585

10.1093/ilar.43.4.202

Kiefer J, 1959, Optimum experimental designs, J R Stat Soc Ser B, 21, 272

10.1073/pnas.0237333100

10.1042/BST0311503

10.1093/bioinformatics/14.10.869

10.1016/j.biosystems.2005.06.016

Honerkamp J, 1993, Stochastic Dynamical Systems

Tarantola A, 2005, Inverse Problem Theory

Horbelt W, 2001, Maximum likelihood estimation in dynamical systems

10.1016/S0043-1354(01)00012-4

Silvey SD, 1970, Statistical Inference

10.1177/0037549703040937

Dette H, 2003, Standardized maximum E‐optimal designs for the Michaelis‐Menten model, Stat Sin, 13, 1147

10.1080/00401706.1975.10489266

10.1016/j.jfoodeng.2007.02.006

Atkinson AC, 1992, Optimum Experimental Designs, 10.1093/oso/9780198522546.001.0001

10.4153/CJM-1960-030-4

10.1093/biomet/62.2.277

10.1016/0025-5564(90)90055-4

10.1016/0005-1098(94)90029-9

10.1093/bioinformatics/btm382

10.1016/S0006-3495(98)77881-6

10.1093/biomet/62.2.313

10.2307/1403635

10.1214/aos/1176345150

10.1093/biomet/79.2.375

10.1016/j.csda.2004.05.032

10.1016/j.automatica.2006.12.013

10.1214/aos/1176346795

Yue R‐X, 1999, Robust designs for fitting linear models with misspecification, Stat Sin, 9, 1053

CaseyFP BairdD FengQ GutenkunstRN WaterfallJJ MyersCR BrownKS CerioneRA&SethnaJP(2006)Optimal experimental design in an EGFR signaling and down‐regulation model. Technical report Center for Applied Mathematics Cornell University Ithaca NY.

10.23919/ACC.1989.4790520

10.1186/1471-2105-6-155

10.1002/aic.690421107

10.1002/aic.690440618

10.1142/S0218127404010461

10.1109/TAC.1974.1100705

Sakamoto Y, 1986, Akaike Information Criterion Statistics

10.1214/aos/1176344136

10.1214/aos/1176346150

Cox D, 1961, Proceedings of Fourth Berkeley Symposium on Mathematical Statistics and Probability, 105

Honerkamp J, 2002, Statistical Physics. An Advanced Approach with Applications

10.1080/01621459.1987.10478472

10.1080/00401706.1965.10490265

10.1093/biomet/62.1.57

Atkinson AC, 1975, The design of experiments for discriminating between several models, Biometrika, 62, 289

10.1080/00401706.1967.10490441

10.1016/0009-2509(84)80132-3

10.1016/0009-2509(83)85004-0

Hsiang T, 1971, A practical method for discriminating among mechanistic models, Can J Chem Eng, 38, 225

10.1002/cjce.5450480213

10.2307/1267795

10.1021/ma00080a011

10.1016/S0006-3495(04)74201-0

10.1016/S1570-7946(03)80071-8