Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aajoud A, Ravanel P, Tissut M (2003) Fipronil metabolism and dissipation in a simplified aquatic ecosystem. J Agric Food Chem 51:1347–1352
Abbas N, Khan HA, Shad S (2014) Cross-resistance, genetics, and realized heritability of resistance to fipronil in the house fly, Musca domestica (Diptera: Muscidae): a potential vector for disease transmission. Parasitol Res 113(4):1343–1352. doi: 10.1007/s00436-014-3773-4
Alyokhin A, Dively G, Patterson M, Castaldo C, Rogers D, Mahoney M, Wollam J (2007) Resistance and cross-resistance to imidacloprid and thiamethoxam in the Colorado potato beetle. Pest Manag Sci 63:32–41
Alyokhin A, Baker M, Mota-Sanchez D, Dively G, Grafius E (2008) Colorado potato beetle resistance to insecticides. Am J Potato Res 85:395–413. doi: 10.1007/s12230-008-9052-0
Apenet (2009) Effects of coated maize seed on honey bees. Report based on results obtained from the first year activity of the APENET project. Accessible at: http://www.reterurale.it/apenet
Apenet (2010) Effects of coated maize seed on honey bees. Report based on results obtained from the second year (2010) activity of the APENET project. Accessible at: http://www.reterurale.it/apenet
Apenet (2011) Effects of coated maize seed on honey bees. Report based on results obtained from the third year (2011) activity of the APENET project. Accessible at: http://www.reterurale.it/apenet
Azzam S, Yang F, Wu JC, Geng J, Yang GQ (2011) Imidacloprid-induced transference effect on some elements in rice plants and the brown planthopper Nilaparvata lugens (Hemiptera: Delphacidae). Insect Sci 18:289–297
Babcock JM, Gerwick CB, Huang JX, Loso MR, Nakamura G, Nolting SP, Rogers RB, Sparks TC, Thomas J, Watson GB, Zhu Y (2011) Biological characterization of sulfoxaflor, a novel insecticide. Pest Manag Sci 67:328–334
Balança G, de Visscher MN (1997) Effects of very low doses of fipronil on grasshoppers and non-target insects following field trials for grasshopper control. Crop Prot 16:553–564
Barbara GS, Zube C, Rybak J, Gauthier M, Grünewald B (2005) Acetylcholine, GABA and glutamate induce ionic currents in cultured antennal lobe neurons of the honeybee, Apis mellifera. J Comp Physiol A 191:823–836
Barbara G, Grünewald B, Paute S, Gauthier M, Raymond-Delpech V (2008) Study of nicotinic acetylcholine receptors on cultured antennal lobe neurones from adult honeybee brains. Invert Neurosci 8:19–29
Barbee GC, Stout MJ (2009) Comparative acute toxicity of neonicotinoid and pyrethroid insecticides to non-target crayfish (Procambarus clarkii) associated with rice-crayfish crop rotations. Pest Manag Sci 65:1250–1256
Bayer CropScience (2006) Confidor with Stress Shield inside. Courier - The Bayer CropScience Magazine for modern agriculture 2/06
Bayer CropSscience (2011) http://www.bayercropscience.com/bcsweb/cropprotection.nsf/id/FactsFigures . Visited 3 March 2011
Bayer Healthcare (2011) http://www.bayerhealthcare.com/scripts/pages/en/company/products/index.php
Beketov MA, Liess M (2008) Acute and delayed effects of the neonicotinoid insecticide thiacloprid on seven freshwater arthropods. Environ Toxicol Chem 27:461–470
Benzidane Y, Touinsi S, Motte E, Jadas-Hécart A, Communal P-Y, Leduc L, Thany SH (2010) Effect of thiamethoxam on cockroach locomotor activity is associated with its metabolite clothianidin. Pest Manag Sci 66:1351–1359
Bergkvist P (2011) Chemical properties, toxicity and regulatory issues on neonicotinoids in Sweden and Europe. Accessible at: http://www.slu.se/PageFiles/103909/Peter_Bergkvist%20x.pdf . Accessed 22 Oct 2012
Bobé A, Meallier P, Cooper JF, Coste CM (1998) Kinetics and mechanisms of abiotic degradation of fipronil (hydrolysis and photolysis). J Agric Food Chem 46(7):2834–2839
Bonmatin J-M, Marchand PA, Cotte JF, Aajoud A, Casabianca H, Goutailler G, Courtiade M (2007) Bees and systemic insecticides (imidacloprid, fipronil) in pollen: subnano-quantification by HPLC/MS/MS and GC/MS. In: Del Re AAM, Capri E, Fragoulis, Trevisan M (eds) Environmental fate and ecological effects of pesticide. La Goliardica Pavese, Pavia, (It), pp. 827–824. http://www.cabdirect.org/abstracts/20083103467.html;jsessionid=8EE58D309B91521CB0CFECD7D2568525 . Accessed 21 June 2014
Bonmatin J-M, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, et al (2014) Environmental fate and exposure; neonicotinoids and fipronil. Environ Sci Pollut Res:1–33. doi: 10.1007/s11356-014-3332-7
Bordereau-Dubois B, List O, Calas-List D, Marques O, Communal P-Y, Thany SH, Lapied B (2012) Transmembrane potential polarization, calcium influx and receptor conformational state modulate the sensitivity of the imidacloprid-insensitive neuronal insect nAChR to the neonicotinoid insecticides. J Pharmacol Exp Ther 341(2):326–339. doi: 10.1124/jpet.111.188060
Brassard D (2012) Estimated incremental increase in clothianidin usage from pending registrations (DP404793). US Environmental Protection Agency memorandum, Washington
Bromilow RH, Chamberlain K (1995) Principles governing uptake and transport of chemicals. Plant contamination: modelling and simulation. Lewis Publishers, London, pp 37–64
Brunet JL, Maresca M, Fantini J, Belzunces LP (2004) Human intestinal absorption of imidacloprid with Caco-2 cells as enterocyte model. Toxicol Appl Pharmacol 194:1–9
Brunet JL, Badiou A, Belzunces LP (2005) In vivo metabolic fate of [14C]-acetamiprid in six biological compartments of the honeybee, Apis mellifera L. Pest Manag Sci 61:742–748
Brunet JL, Maresca M, Fantini J, Belzunces LP (2008) Intestinal absorption of the acetamiprid neonicotinoid by Caco-2 cells: transepithelial transport, cellular uptake and efflux. J Environ Sci Health Part B 43:261–270
Cahill M, Denholm I, Gorman K, Day S, Elbert A, Nauen R (1996) Baseline determination and detection of resistance to imidacloprid in Bemisia tabaci (Homoptera: Aleyrodidae). B Entomol Resist 86:343–349
Calas-List D, List O, Quinchard S, Thany SH (2013) Calcium pathways such as cAMP modulate clothianidin action through activation of α-bungarotoxin-sensitive and -insensitive nicotinic acetylcholine receptors. Neurotoxicology 37:127–133
Casida JE (2011) Neonicotinoid metabolism: compounds, substituents, pathways, enzymes, organisms, and relevance. J Agric Food Chem 59:2923–2931
Casida JE, Durkin KA (2013) Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annu Rev Entomol 58:99–117
Casida JE, Quistad GB (2004) Why insecticides are more toxic to insects than people: the unique toxicology of insects. J Pest Sci 29:81–86
CCM International Ltd (2011). Accessible at: http://www.researchandmarkets.com/reports/649028/production_and_market_of_imidacloprid_in_china . Accessed 21 Oct 2012
Chagnon M, Kreutzweiser D, Mitchell EAD, Morrissey CA, Noome DA, et al (2014) Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ Sci Pollut Res:1–16. doi: 10.1007/s11356-014-3277-x
Chao SL, Casida JE (1997) Interaction of imidacloprid metabolites and analogs with the nicotinic acetylcholine receptor of mouse brain in relation to toxicity. Pest Biochem Physiol 58:77–88
Charpentier G, Louat F, Bonmatin J-M, Marchand PA, Vannier F et al (2014) Lethal and sublethal effects of imidacloprid, after chronic exposure, on the insect model Drosophila melanogaster. Environ Sci Technol 48(7):4096–4102
Chauzat MP, Martel AC, Cougoule N, Porta P, Lachaize J et al (2011) An assessment of honeybee colony matrices, Apis mellifera (Hymenoptera: Apidae) to monitor pesticide presence in continental France. Environ Toxicol Chem 30:103–111
Chen MF, Huang JW, Wong SW, Li GC (2005) Analysis of insecticide clothianidin and its metabolites in rice by liquid chromatography with a UV detector. J Food Drug Anal 13:279–283
Chen T, Dai YJ, Ding JF, Yuan S, Ni JP (2008) N-demethylation of neonicotinoid insecticide acetamiprid by bacterium Stenotrophomonas maltophilia CGMCC 1.1788. Biodegradation 19:651–658
Cole LM, Nicholson RA, Casida JE (1993) Action of phenylpyrazole insecticides at the GABA-gated chloride channel. Pestic Biochem Physiol 46:47–54
Courjaret R, Lapied B (2001) Complex intracellular messenger pathways regulate one type of neuronal alpha-bungarotoxin-resistant nicotinic acetylcholine receptors expressed in insect neurosecretory cells (dorsal unpaired median neurons). Mol Pharmacol 60:80–91
Courjaret R, Grolleau F, Lapied B (2003) Two distinct calcium-sensitive and -insensitive PKC up- and down-regulate an alpha-bungarotoxin-resistant nAChR1 in insect neurosecretory cells (DUM neurons). Eur J Neurosci 17:2023–2034
Cui L, Sun L, Yang D, Yan X, Yuan H (2012) Effects of cycloxaprid, a novel cis-nitromethylene neonicotinoid insecticide, on the feeding behaviour of Sitobion avenae. Pest Manag Sci 68:1484–1491
Cutler P, Slater R, Edmunds AJF, Maienfisch P, Hall RG, Earley FGP, Pitterna T, Pal S, Paul VL, Goodchild J, Blacker M, Hagmann L, Crossthwaite AJ (2013) Investigating the mode of action of sulfoxaflor: a fourth-generation neonicotinoid. Pest Manag Sci 69:607–619
Dai YJ, Ji WW, Chen T, Zhang WJ, Liu ZH, Ge F, Yuan S (2010) Metabolism of the neonicotinoid insecticides acetamiprid and thiacloprid by the yeast Rhodotorula mucilaginosa strain IM-2. J Agric Food Chem 58:2419–2425
D'Amour KA, Casida JE (1999) Desnitroimidacloprid and nicotine binding site in rat recombinant alpha a4b2 neuronal nicotinic acetylcholine receptor. Pest Biochem Physiol 64:55–61
De Freitas Bueno A, Batistela MJ, de Freitas Bueno RCO, de Barros Franca-Neto J, Nishikawa MAN, Filho AL (2011) Effects of integrated pest management, biological control, and prophylactic use of insecticides on the management and sustainability of soybean. Crop Prot 30:937–945
De Uderzo APFM, Diniz MER, Nascentes CC, Catharino RR, Eberlin MN, Augusti R (2007) Photolytic degradation of the insecticide thiamethoxam in aqueous medium monitored by direct infusion electrospray ionization mass spectrometry. Int J Mass Spectrom 42:1319–1325
Decourtye A, Devillers J (2010) Ecotoxicity of neonicotinoid insecticides to bees. Insect nicotinic acetylcholine receptors. Springer. pp. 85–95. Accessible at: http://link.springer.com/chapter/10.1007/978-1-4419-6445-8_8 . Accessed 10 Jul 2014
Déglise P, Grünewald B, Gauthier M (2002) The insecticide imidacloprid is a partial agonist of the nicotinic receptor of honeybee Kenyon cells. Neurosci Lett 321:13–16
Denholm I, Cahill M, Dennehy TJ, Horowitz AR (1998) Challenges with managing insecticide resistance in agricultural pests, exemplified by the whitefly Bemisia tabaci. Philos Trans R Soc B 353(1376):1757–1767. doi: 10.1098/rstb.1998.0328
Dick RA, Kanne DB, Casida JE (2005) Identification of aldehyde oxidase as the neonicotinoid nitroreductase. Chem Res Toxicol 18:317–323
Dieckmann Y, Görth FC, Ishaque M, Kerl W, Köhle H, et al (2010a) Agrochemical Formulations Comprising Co-Polymers Based on Ethylenically Unsaturated Dicarboxylic Mono and Diesters. Patent No. US 2010/0063167 A1. 1–14
Dieckmann Y, Görth FC, Ishaque M, Kerl W, Köhle H, et al (2010b) Agrochemical Formulations Comprising 1-vinyl-2-pyrrolidinone Co-Polymers. Patent No. US 2010/0075849 A1. 1–14
Dieckmann Y, Ishaque M, Muenster I, Picard L, Benz A, et al (2010c) Systemicity enhancers. Patent No. US 2010/0204045 A1. 1–21
DoW Agro Sciences (2013) DoW AgroSciences receives US EPA Registration for Sulfoxaflor
Dupuis JP, Gauthier M, Raymond-Delpech V (2011) Expression patterns of nicotinic subunits a2, a7, a8, and b1 affect the kinetics and pharmacology of ACh-induced currents in adult bee olfactory neuropiles. J Neurophysiol 106:1604–1613
Elbert A, Nauen R (2000) Resistance of Bemisia tabaci (Homoptera:Aleyrodidae) to insecticides in southern Spain with special reference to neonicotinoids. Pest Manag Sci 56:60–64
Elbert A, Haas M, Springer B, Thielert W, Nauen R (2008) Applied aspects of neonicotinoid uses in crop protection. Pest Manag Sci 64:1099–1105
European Commission, Directorate General of Health and Consumer protection (2006) Review report for the active substance thiamethoxam. Accessible at: http://ec.europa.eu/food/plant/protection/evaluation/newactive/thiamethoxam_en.pdf
European Food Safety Authority (EFSA) (2010) Modification of the existing MRL for clothianidin in carrots. EFSA Journal 8:1515 [23 pp.]. Accessible at: http://www.efsa.europa.eu/it/efsajournal/doc/1515.pdf
European Food Safety Authority (EFSA) (2012) Statement on the findings in recent studies investigating sub-lethal effects in bees of some neonicotinoids in consideration of the uses currently authorised in Europe. EFSA J 10(6):2752. doi: 10.2903/j.efsa.2012.2752 , 27 pp
European Food Safety Authority (EFSA) (2014) Conclusion on the peer review of the pesticide risk assessment of the active substance sulfoxaflor. EFSA J 12:3692. doi: 10.2903/j.efsa.2014.3692 , 170 pp
FAO acetamiprid. Accessible at: http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Report11/Acetamiprid.pdf
FAO clothianidin. Accessible at: http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Evaluation10/Chlotiahinidin.pdf
FAO dinotefuran. Accessible at: http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Evaluation12/Dinotefuran.pdf
FAO fipronil. Accessible at: http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Evaluation01/08_Fipronil.pdf
FAO imidacloprid. Accessible at: http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Evaluation02/IMIDA_EVjjb.pdf
FAO thiacloprid. Accessible at: http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Evaluation06/Thiacloprid06.pdf
FAO thiamethoxam. Accessible at: http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Evaluation10/Thiamethoxam.pdf
Feltham H, Park K, Goulson D (2014) Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency. Ecotoxicology 23:317–323. doi: 10.1007/s10646-014-1189-7
Fogel MN, Schneider MI, Desneux N, González B, Ronco AE (2013) Impact of the neonicotinoid acetamiprid on immature stages of the predator Eriopis connexa (Coleoptera: Coccinellidae). Ecotoxicology 22:1063–1071
Ford KA, Casida JE (2006a) Unique and common metabolites of thiamethoxam, clothianidin, and dinotefuran in mice. Chem Res Toxicol 19:1549–1556
Ford KA, Casida JE (2006b) Chloropyridinyl neonicotinoid insecticides: diverse molecular substituents contribute to facile metabolism in mice. Chem Res Toxicol 19:944–951
Ford KA, Casida JE (2008) Comparative metabolism and pharmacokinetics of seven neonicotinoid insecticides in spinach. J Agric Food Chem 56:10168–10175
Ford KA, Casida JE, Chandran D, Gulevich AG, Okrent RA, Durkin KA, Sarpong R, Bunnelle EM, Wildermuth MC (2010) Neonicotinoid insecticides induce salicylate-associated plant defense responses. PNAS 107:17527–17532
France (2005) Draft Assessment Report (DAR). Initial risk assessment provided by the rapporteur Member State France for the existing active substance fipronil of the second stage of the review programme referred to in Article 8(2) of Council Directive 91/414/EEC
Furlan L, Kreutzweiser DP (2014) Alternatives to neonicotinoid insecticides for pest control: case studies in agriculture and forestry. Enviro Sci Pollut Res (this issue)
Georghiou GP, Mellon RB (1983) Pesticide resistance in time and space. Pest resistance to pesticides. Springer. pp. 1–46. Accessible: http://link.springer.com/chapter/10.1007/978-1-4684-4466-7_1 . Accessed 7 Feb 2014
Gibbons D, Morrissey C, Mineau P (2014) A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Enviro Sci Pollut Res. doi: 10.1007/s11356-014-3180-5
Goulson D (2013) An overview of the environmental risks posed by neonicotinoid insecticides. J Appl Ecol 50(4):977–987. doi: 10.1111/1365-2664.12111
Grafton-Cardwell EE, Lee JE, Robillard SM, Gorden JM (2008) Role of imidacloprid in integrated pest management of California citrus. J Econ Entomol 101:451–460
Grant DB, Chalmers AE, Wolff MA, Hoffman HB, Bushey DF, Kuhr RJ, Motoyama N (1998) Fipronil: action at the GABA receptor. In: Pesticides and the future: minimizing chronic exposure of humans and the environment. Ios Press, Amsterdam, pp 147–156
Greatti M, Barbattini R, Stravisi A, Sabatini AG, Rossi S (2006) Presence of the a.i. imidacloprid on vegetation near corn fields sown with Gaucho dressed seeds. Bull Insectol 59:99–103
Green T, Toghill A, Lee R, Waechter F, Weber E, Noakes J (2005a) Thiamethoxam induced mouse liver tumors and their relevance to humans. Part 1: mode of action studies in the mouse. Toxicol Sci 86:36–47
Green T, Toghill A, Lee R, Waechter F, Weber E, Peffer R, Noakes J, Robinson M (2005b) Thiamethoxam induced mouse liver tumors and their relevance to humans. Part 2: species differences in response. Toxicol Sci 86:48–55
Guez D, Suchail S, Gauthier M, Maleszka R, Belzunces LP (2001) Contrasting effects of imidacloprid on habituation in 7- and 8-day-old honeybees (Apis mellifera). Neurobiol Learn Mem 76:183–191
Guez D, Belzunces LP, Maleszka R (2003) Effects of imidacloprid metabolites on habituation in honeybees suggest the existence of two subtypes of nicotinic receptors differentially expressed during adult development. Pharmacol Biochem Behav 75:217–222
Gunasekara AS, Truong T, Goh KS, Spurlock F, Tjeerdema RS (2007) Environmental fate and toxicology of fipronil. J Pest Sci 32:189–199. doi: 10.1584/jpestics.R07-02
Hainzl D, Casida JE (1996) Fipronil insecticide: novel photochemical desulfinylation with retention of neurotoxicity. PNAS 93:12764–12767
Hainzl D, Cole LM, Casida JE (1998) Mechanisms for selective toxicity of fipronil insecticide and its sulfone metabolite and desulfinyl photoproduct. Chem Res Toxicol 11:1529–1535
Hasegawa K, Arakawa M, Funatsu K (1999) 3D-QSAR study of insecticidal neonicotinoid compounds based on 3-way partial least squares model. Chemometr Intell Lab 47:33–40
Hayasaka D, Korenaga T, Suzuki K, Saito F, Sánchez-Bayo F et al (2012a) Cumulative ecological impacts of two successive annual treatments of imidacloprid and fipronil on aquatic communities of paddy mesocosms. Ecotoxicol Environ Saf 80:355–362
Hayasaka D, Korenaga T, Suzuki K, Sánchez-Bayo F, Goka K (2012b) Differences in susceptibility of five cladoceran species to two systemic insecticides, imidacloprid and fipronil. Ecotoxicology 21:421–427
Herron GA, Wilson LJ (2011) Neonicotinoid resistance in Aphis gossypii (Aphididae: Hemiptera) from Australian cotton. Aust J Entomol 50:93–98
Honda H, Tomizawa M, Casida JE (2006) Insect nicotinic acetylcholine receptors: neonicotinoid binding site specificity is usually but not always conserved with varied substituents and species. J Agric Food Chem 54:3365–3371
IUPAC (2014) http://sitem.herts.ac.uk/aeru/iupac/316.htm Accessed 3 Apr 2014
Japan’s National Institute for Environmental Studies database, provided by Mizuno, R. in litt., 2012
Jepson JEC, Brown LA, Sattelle DB (2006) The actions of the neonicotinoid imidacloprid on cholinergic neurons of Drosophila melanogaster. Invert Neurosci 6:33–40
Jeschke P, Nauen R (2008) Neonicotinoids—from zero to hero in insecticide chemistry. Pest Manag Sci 64:1084–1098
Jeschke P, Nauen R, Schindler M, Elbert A (2011) Overview of the status and global strategy for neonicotinoids. J Agric Food Chem 59:2897–2908
Jeschke P, Nauen R, Beck ME (2013) Nicotinic acetylcholine receptor agonists: a milestone for modern crop protection. Angew Chem Int Ed 52:9464–9485
Johnson KD, O’Neil ME, Ragsdale DW, Difonzo CD, Swinton SM, Dixon PM, Potter BD, Hodgson EW, Costamagna AC (2009) Probability of cost-effective management of soybean aphid (Hemiptera: Aphididae) in North America. J Econ Entomol 102:2101–2108
Kagabu S, Maienfisch P, Zhang AG, Granda-Minones J, Haettenschwiler J, Kayser H, Maetzke T, Casida JE (2000) 5-azidoimidacloprid and an acyclic analogue as candidate photoaffinity probes for mammalian and insect nicotinic acetylcholine receptors. J Med Chem 43:5003–5009
Kagabu S, Nishiwaki H, Sato K, Hibi M, Yamaoka N, Nakagawa Y (2002) Nicotinic acetylcholine receptor binding of imidacloprid-related diaza compounds with various ring sizes and their insecticidal activity against Musca domestica. Pest Manag Sci 58:483–490
Kagabu S, Nishimura K, Naruse Y, Ohno I (2008) Insecticidal and neuroblocking potencies of variants of the thiazolidine moiety of thiacloprid and quantitative relationship study for the key neonicotinoid pharmacophore. J Pest Sci 33:58–66
Kagabu S, Takagi M, Ohno I, Mikawa T, Miyamoto T (2009) Crown-capped imidacloprid: a novel design and insecticidal activity. Bioorg Med Chem Lett 19:2947–2948
Kanne DB, Dick RA, Tomizawa M, Casida JE (2005) Neonicotinoid nitroguanidine insecticide metabolites: synthesis and nicotinic receptor potency of guanidines, aminoguanidines, and their derivatives. Chem Res Toxicol 18:1479–1484
Karatolos N, Denholm I, Williamson M, Nauen R, Gorman K (2010) Incidence and characterisation of resistance to neonicotinoid insecticides and pymetrozine in the greenhouse whitefly, Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae). Pest Manag Sci 66:1304–1307
Karmakar R, Kulshrestha G (2009) Persistence, metabolism and safety evaluation of thiamethoxam in tomato crop. Pest Manag Sci 65:931–937
Karmakar R, Bhattacharya R, Kulshrestha G (2009) Comparative metabolite profiling of the insecticide thiamethoxam in plant and cell suspension culture of tomato. J Agric Food Chem 57:6369–6374
Kavi LAK, Kaufman PE, Scott JG (2014) Genetics and mechanisms of imidacloprid resistance in house flies. Pest Biochem Physiol 109:64–69
Kim BM, Park JS, Choi JH, El-Aty AMA, Na TW, Shim JH (2012) Residual determination of clothianidin and its metabolites in three minor crops via tandem mass spectrometry. Food Chem 131:1546–1551
Kiriyama K, Nishimura K (2002) Structural effects of dinotefuran and analogues in insecticidal and neural activities. Pest Manag Sci 58:669–676
Kiriyama K, Nishiwaki H, Nakagawa Y, Nishimura K (2003) Insecticidal activity and nicotinic acetylcholine receptor binding of dinotefuran and its analogues in the housefly, Musca domestica. Pest Manag Sci 59:1093–1100
Klein O (2003) Behaviour of clothianidin (TI-435) in plants and animals. Pflanzenschutz-Nachr Bayer 56:75–101
Koch RL, Burkness EC, Hutchison WD, Rabaey TL (2005) Efficacy of systemic insecticide seed treatments for protection of early-growth-stage snap beans from bean leaf beetle (Coleoptera: Chrysomelidae) foliar feeding. Crop Prot 24:734–742
Kuhar TP, Stivers-Young LJ, Hoffmann MP, Taylor AG (2002) Control of corn flea beetle and Stewart’s wilt in sweet corn with imidacloprid and thiamethoxam seed treatments. Crop Prot 21:25–31
Lansdell SJ, Millar NS (2000) The influence of nicotinic receptor subunit composition upon agonist, alpha-bungarotoxin and insecticide (imidacloprid) binding affinity. Neuropharmacology 39:671–679
Lanzoni A, Sangiorgi L, De Luigi V, Consolini L, Pasqualini E, Burgio G (2012) Evaluation of chronic toxicity of four neonicotinoids to Adalia bipunctata L. (Coleoptera: Coccinellidae) using a demographic approach. IOBC/wprs Bull 74:211–217
Lapied B, Lecorronc H, Hue B (1990) Sensitive nicotinic and mixed nicotinic-muscarinic receptors in insect neurosecretory cells. Brain Res 533:132–136
Laurent FM, Rathahao E (2003) Distribution of C-14 imidacloprid in sunflowers (Helianthus annuus L.) following seed treatment. J Agric Food Chem 51:8005–8010
Le Questel J-Y, Graton J, Cerón-Carrasco JP, Jacquemin D, Planchat A, Thany SH (2011) New insights on the molecular features and electrophysiological properties of dinotefuran, imidacloprid and acetamiprid neonicotinoid insecticides. Bioorg Med Chem Lett 19:7623–7634
Li J, Shao Y, Ding Z, Bao H, Liu Z, Han Z, Millar NS (2010) Native subunit composition of two insect nicotinic receptor subtypes with differing affinities for the insecticide imidacloprid. Insect Biochem Mol Biol 40:17–22
Li C, Xu X-Y, Li J-Y, Ye Q-F, Li Z (2011) Synthesis and chiral purification of 14C-labeled novel neonicotinoids, paichongding. J Label Comp Radiopharm 54:775–779
Lind RJ, Clough MS, Reynolds SE, Earley FGP (1998) [3H]-Imidacloprid Labels high- and low-affinity nicotinic acetylcholine receptor-like binding sites in the Aphid Myzus persicae (Hemiptera: Aphididae). Pestic Biochem Physiol 62:3–14
Lind RJ, Clough MS, Earley FGP, Wonnacott S, Reynolds SE (1999) Characterisation of multiple [alpha]-bungarotoxin binding sites in the aphid Myzus persicae (Hemiptera: Aphididae). Insect Biochem Mol Biol 29:979–988
Liu MY, Latli B, Casida JE (1995) Imidacloprid binding site in Musca nicotinic acetylcholine receptor: interactions with physostigmine and a variety of nicotinic agonists with chloropyridyl and chlorothiazolyl substituents. Pest Biochem Physiol 52:170–181
Liu ZW, Williamson MS, Lansdell SJ, Denholm I, Han ZJ, Millar NS (2005) A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). PNAS 102:8420–8425
Liu Z, Williamson MS, Lansdell SJ, Han Z, Denholm I, Millar NS (2006) A nicotinic acetylcholine receptor mutation (Y151S) causes reduced agonist potency to a range of neonicotinoid insecticides. J Neurochem 99:1273–1281
Liu GY, Ju XL, Cheng J (2010) Selectivity of imidacloprid for fruit fly versus rat nicotinic acetylcholine receptors by molecular modeling. J Mol Model 16:993–1002
Liu Z, Dai Y, Huang G, Gu Y, Ni J, Wei H, Yuan S (2011) Soil microbial degradation of neonicotinoid insecticides imidacloprid, acetamiprid, thiacloprid and imidaclothiz and its effect on the persistence of bioefficacy against horsebean aphid Aphis craccivora Koch after soil application. Pest Manag Sci 67:1245–1252
Longhurst C, Babcock JM, Denholm I, Gorman K, Thomas JD, Sparks TC (2013) Cross-resistance relationships of the sulfoximine insecticide sulfoxaflor with neonicotinoids and other insecticides in the whiteflies Bemisia tabaci and Trialeurodes vaporariorum. Pest Manag Sci 69:809–813
Lu C, Warchol KM, Callahan RA (2012) In situ replication of honey bee colony collapse disorder. Bull Insectol 65:99–106
Lu C, Warchol KM, Callahan RA (2014) Sub-lethal exposure to neonicotinoids impaired honey bees winterization before proceeding to colony collapse disorder. Bull Insectol 67:125–130
Macfadyen S, Hardie DC, Fagan L, Stefanova K, Perry KD, DeGraaf HE, Holloway J, Spafford H, Umina PA (2014) Reducing insecticide use in broad-acre grains production: an Australian study. PlosOne 9:e89119
Maienfisch P, Angst M, Brandl F, Fischer W, Hofer D, Kayser H, Kobel W, Rindlisbacher A, Senn R, Steinemann A, Withmer H (2001a) Chemistry and biology of thiamethoxam: a second generation neonicotinoid. Pest Manag Sci 57:906–913
Maienfisch P, Huerlimann H, Rindlisbacher A, Gsell L, Dettwiler H, Haettenschwiler J, Sieger E, Walti M (2001b) The discovery of thiamethoxam: a second-generation neonicotinoid. Pest Manag Sci 57:165–176
Main AR, Headley JV, Peru KM, Michel NL, Cessna AJ et al (2014) Widespread use and frequent detection of neonicotinoid insecticides in Wetlands of Canada’s Prairie Pothole Region. PLoS One 9:e92821
Maini S, Medrzycki P, Porrini C (2010) The puzzle of honey bee losses: a brief review. Bull Insectol 63:153–160
Matsuda K, Buckingham SD, Kleier D, Rauh JJ, Grauso M, Sattelle DB (2001) Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol Sci 22:573–580
Matsuda K, Shimomura M, Ihara M, Akamatsu M, Sattelle DB (2005) Neonicotinoids show selective and diverse actions on their nicotinic receptor targets: electrophysiology, molecular biology, and receptor modeling studies. Biosci Biotechnol Biochem 69:1442–1452
Matsumoto T (2013) Short-and long-term effects of neonicotinoid application in rice fields, on the mortality and colony collapse of honeybees (Apis mellifera). J Apic Sci 57:21–35
Matsumura M, Sanada-Morimura S (2010) Recent status of insecticide resistance in Asian rice planthoppers. JARQ 44:225–230
Matsumura M, Takeuchi H, Satoh M, Sanada-Morimura S, Otuka A, Watanabe T, Van Thanh D (2008) Species-specific insecticide resistance to imidacloprid and fipronil in the rice planthoppers Nilaparvata lugens and Sogatella furcifera in East and South-east Asia. Pest Manag Sci 64:1115–1121
Meredith RH, Heatherington PJ, Morris DB (2002) Clothianidin—a new chloronicotinyl seed treatment for use on sugar beet and cereals: field trial experiences from Northern Europe. The BCPC Conference: Pests and diseases, Volumes 1 and 2. Proceedings of an international conference held at the Brighton Hilton Metropole Hotel, Brighton, UK, 18–21 November 2002. British Crop ProtectionCrop Protection Council. pp. 691–696. Accessible at: http://www.cabdirect.org/abstracts/20033026728.html . Accessed 4 Feb 2014
Miyagi S, Komaki I, Ozoe Y (2006) Identification of a high-affinity binding site for dinotefuran in the nerve cord of the American cockroach. Pest Manag Sci 62:293–298
Mole N, Williamson S, Lievens P, Tyrell K (2013) Neonicotinoid restrictions present a unique opportunity to introduce safer agro-ecological approaches to pest management. Outlooks Pest Manag 24:156–159
Mori K, Okumoto T, Kawahara N, Ozoe Y (2002) Interaction of dinotefuran and its analogues with nicotinic acetylcholine receptors of cockroach nerve cords. Pest Manag Sci 58:190–196
Narahashi T, Zhao X, Ikeda T, Nagata K, Yeh JZ (2007) Differential actions of insecticides on target sites: basis for selective toxicity. Hum Exp Toxicol 26:361–366
Narahashi T, Zhao X, Ikeda T, Salgado VL, Yeh JZ (2010) Glutamate-activated chloride channels: unique fipronil targets present in insects but not in mammals. Pestic Biochem Physiol 97:149–152
Nauen R, Denholm I (2005) Resistance of insect pests to neonicotinoid insecticides: current status and future prospects. Arch Insect Biochem Physiol 58:200–215
Nauen R, Tietjen K, Wagner K, Elbert A (1998) Efficacy of plant metabolites of imidacloprid against Myzus persicae and Aphis gossypii (Homoptera : Aphididae). J Pest Sci 52:53–57
Nauen R, Ebbinghaus U, Tietjen K (1999) Ligands of the nicotinic acetylcholine receptor as insecticides. J Pest Sci 55:608–610
Nauen R, Ebbinghaus-Kintscher U, Schmuck R (2001) Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera (Hymenoptera : Apidae). Pest Manag Sci 57:577–586
Nauen R, Ebbinghaus-Kintscher U, Salgado VL, Kaussmann M (2003) Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Pest Biochem Physiol 76:55–69
Nault BA, Taylor AG, Urwiler M, Rabaey T, Hutchison WD (2004) Neonicotinoid seed treatments for managing potato leafhopper infestations in snap bean. Crop Prot 23:147–154
Nishimura K, Tanaka M, Iwaya K, Kagabu S (1998) Relationship between insecticidal and nerve-excitatory activities of imidacloprid and its alkylated congeners at the imidazolidine NH site. Pest Biochem Physiol 62:172–178
Nishiwaki H, Nakagawa Y, Kuwamura M, Sato K, Akamatsu M, Matsuda K, Komai K, Miyagawa H (2003) Correlations of the electrophysiological activity of neonicotinoids with their binding and insecticidal activities. Pest Manag Sci 59:1023–1030
Nishiwaki H, Sato K, Nakagawa Y, Miyashita M, Miyagawa H (2004) Metabolism of imidacloprid in houseflies. J Pest Sci 29:110–116
Oliveira EE, Schleicher S, Büschges A, Schmidt J, Kloppenburg P, Salgado VL (2011) Desensitization of nicotinic acetylcholine receptors in central nervous system neurons of the stick insect (Carausius morosus) by imidacloprid and sulfoximine insecticides. Insect Biochem Mol Biol 41:872–880
Orr N, Shaffner AJ, Watson GB (1997) Pharmacological characterization of an epibatidine binding site in the nerve cord of Periplaneta americana. Pest Biochem Physiol 58:183–192
Pandey G, Dorrian SJ, Russell RJ, Oakeshott JG (2009) Biotransformation of the neonicotinoid insecticides imidacloprid and thiamethoxam by < i > Pseudomonas</i > sp. 1G. Biochem Biophys Res Commun 380:710–714
Perry T, Chan JQ, Batterham P, Watson GB, Geng C, Sparks TC (2012) Effects of mutations in Drosophila nicotinic acetylcholine receptor subunits on sensitivity to insecticides targeting nicotinic acetylcholine receptors. Pest Biochem Physiol 102:56–60
Pesticide Properties Data Base (PPDB) (2013) http://sitem.herts.ac.uk/aeru/footprint/it/index.htm . Accessed 5 Oct 2013
Phugare SS, Jadhav JP (2013) Biodegradation of acetamiprid by isolated bacterial strain Rhodococcus sp. BCH2 and toxicological analysis of its metabolites in silkworm (Bombax mori). CLEAN Soil Air Water. doi: 10.1002/clen.201200563
Pisa L, Amaral-Rogers V, Belzunces LP, Bonmatin J-M, Downs C, Goulson D, Kreutzweiser DP, Krupke C, Liess M, McField M, Noome DA, Settele J, Simon-Delso N, Stark JD, Van der Sluijs JP, Van Dyck H, Wiemers M (2014) Effects of neonicotinoids and fipronil on non-target invertebrates. Enviro Sci Pollut Res doi: 10.1007/s11356-014-3471-x
Pollack P (2011) Fine chemicals: the industry and the business – 2nd edition. John Wiley & Sons, New Jersey
Prabhakar N, Toscano NC, Castle SJ, Henneberry TJ (1997) Selection for resistance to imidacloprid in silverleaf whiteflies from the Imperial Valley and development of a hydroponic bioassay for resistance monitoring. J Pest Sci 51:419–428
Rahman MM, Park JH, Abd El-Aty AM, Choi JH, Yang A, Park KH, Nashir Uddin Al Mahmud M, Im GJ, Shim JH (2013) Feasibility and application of an HPLC/UVD to determine dinotefuran and its shorter wavelength metabolites residues in melon with tandem mass confirmation. Food Chem 136:1038–1046
Ratra GS, Casida JE (2001) GABA receptor subunit composition relative to insecticide potency and selectivity. Toxicol Lett 122:215–222
Ratra GS, Kamita SG, Casida JE (2001) Role of human GABAA receptor β3 subunit in insecticide toxicity. Toxicol Appl Pharmacol 172:233–240. doi: 10.1006/taap.2001.9154
Raveton M, Aajoud A, Willison JC, Aouadi H, Tissut M et al (2006) Phototransformation of the insecticide fipronil: identification of novel photoproducts and evidence for an alternative pathway of photodegradation. Environ Sci Technol 40:4151–4157
Raveton M, Aajoud A, Willison J, Cherifi M, Tissut M, Ravanel P (2007) Soil distribution of fipronil and its metabolites originating from a seed-coated formulation. Chemosphere 69(7):1124–1129
Roberts T, Hutson D (1999) Metabolic pathways of agrochemicals. In: Terry R, David H (eds) Insecticides and fungicides. The Royal Society of Chemistry, Cambridge
Roessink I, Merga LB, Zweers HJ, Van den Brink PJ (2013) The neonicotinoid imidacloprid shows high chronic toxicity to mayfly nymphs. Environ Toxicol Chem 32:1096–1100
Royer TA, Giles KL, Nyamanzi T, Hunger RM, Krenzer EG et al (2005) Economic evaluation of the effects of planting date and application rate of imidacloprid for management of cereal aphids and barley yellow dwarf in winter wheat. J Econ Entomol 98:95–102
Salgado VL, Saar R (2004) Desensitizing and non-desensitizing subtypes of alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors in cockroach neurons. J Insect Physiol 50:867–879
Sánchez-Bayo F, Goka K (2006) Ecological effects of the insecticide imidacloprid and a pollutant from antidandruff shampoo in experimental rice fields. Environ Toxicol Chem 25:1677–1687
Sánchez-Bayo F, Hyne RV (2014) Detection and analysis of neonicotinoids in river waters—development of a passive sampler for three commonly used insecticides. Chemosphere 99:143–151
Sanchez-Bayo F, Tennekes AH, Goka K (2013) Impact of systemic insecticides on organisms and ecosystems. In: Trdan S, editor. Insecticides—development of safer and more effective technologies. InTech. Accessible at: http://www.intechopen.com/books/insecticides-development-of-safer-and-more-effective-technologies/impact-of-systemic-insecticides-on-organisms-and-ecosystems . Accessed 6 Jun 2014
Schulz-Jander DA, Casida JE (2002) Imidacloprid insecticide metabolism: human cytochrome P450 isozymes differ in selectivity for imidazolidine oxidation versus nitroimine reduction. Toxicol Lett 132:65–70
Schwartz BJ, Sparrow FK, Heard NE, Thede BM (2000) Simultaneous derivatization and trapping of volatile products from aqueous photolysis of thiamethoxam insecticide. J Agric Food Chem 48:4671–4675
Seagraves MP, Lundgren JG (2012) Effects of neonicotinoid seed treatments on soybean aphid and its natural enemies. J Pest Sci 85:125–132
Seifert J, Stollberg J (2005) Antagonism of a neonicotinoid insecticide imidacloprid at neuromuscular receptors. Environ Toxicol Pharmacol 20:18–21
Shao X, Ye Z, Bao H, Li Z, Xu X, Li Z, Qian X (2011) Advanced research on cis-neonicotinoids. Chimia 65:957–960
Shao X, Liu Z, Xu X, Li Z, Qian X (2013a) Overall status of neonicotinoid insecticides in China: production, application and innovation. J Pest Sci 38:1–9
Shao X, Swenson TL, Casida JE (2013b) Cycloxaprid insecticide: nicotinic acetylcholine receptor binding site and metabolism. J Agric Food Chem 61:7883–7888. doi: 10.1021/jf4030695
Shi X, Dick RA, Ford KA, Casida JE (2009) Enzymes and inhibitors in neonicotinoid insecticide metabolism. J Agric Food Chem 57:4861–4866
Shi X, Jiang L, Wang H, Qiao K, Wang D et al (2011) Toxicities and sublethal effects of seven neonicotinoid insecticides on survival, growth and reproduction of imidacloprid-resistant cotton aphid, Aphis gossypii. Pest Manag Sci 67:1528–1533
Sparks TC, DeBoer GJ, Wang NX, Hasler JM, Loso MR, Watson GB (2012) Differential metabolism of sulfoximine and neonicotinoid insecticides by Drosophila melanogaster monooxygenase CYP6G1. Pest Biochem Physiol 103:159–165
Sparks TC, Watson GB, Loso MR, Geng C, Babcock JM, Thomas JD (2013) Sulfoxaflor and the sulfoximine insecticides: chemistry, mode of action and basis for efficacy on resistant insects. Pest Biochem Physiol 107:1–7
Stevens S, Jenkins P (2014) Heavy costs. Center for food safety. Accessible at: http://www.centerforfoodsafety.org/issues/304/pollinators-and-pesticides/reports/2999/heavy-costs-weighing-the-value-of-neonicotinoid-insecticides-in-agriculture#
Suchail S, Guez D, Belzunces LP (2000) Characteristics of imidacloprid toxicity in two Apis mellifera subspecies. Environ Toxicol Chem 19:1901–1905
Suchail S, Guez D, Belzunces LP (2001) Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera. Environ Toxicol Chem 20:2482–2486
Suchail S, De Sousa G, Rahmani R, Belzunces LP (2004a) In vivo distribution and metabolisation of [14C]-imidacloprid in different compartments of Apis mellifera L. Pest Manag Sci 60:1056–1062
Suchail S, Debrauwer L, Belzunces LP (2004b) Metabolism of imidacloprid in Apis mellifera. Pest Manag Sci 60:291–296
Syngenta (2012) 2011 Full Year Results. http://www.syngenta.com/global/corporate/en/news-center/news-releases/pages/120208.aspx . Accessed 29 Sept 2013
Syngenta (2013) 2012 Full Year Results. http://www.syngenta.com/global/corporate/SiteCollectionDocuments/pdf/media-releases/en/20130206-analyst-presentation-fyr2012.pdf . Accessed 29 Sept 2013
Szendrei Z, Grafius E, Byrne A, Ziegler A (2012) Resistance to neonicotinoid insecticides in field populations of the Colorado potato beetle (Coleoptera: Chrysomelidae). Pest Manag Sci 68:941–946
Taira K, Fujioka K, Aoyama Y (2013) Qualitative profiling and quantification of neonicotinoid metabolites in human urine by liquid chromatography coupled with mass spectrometry. PLoS One 8:e80332
Tan J, Galligan JJ, Hollingworth RM (2007) Agonist actions of neonicotinoids on nicotinic acetylcholine receptors expressed by cockroach neurons. Neurotoxicology 28:829–842
Taniguchi T, Kita Y, Matsumoto T, Kimura K (2012) Honeybee colony losses during 2008–2010 caused by pesticide application in Japan. Jpn J Apic 27:15–27
Tennekes HA, Sánchez-Bayo F (2011) Time-dependent toxicity of neonicotinoids and other toxicants: implications for a new approach to risk assessment. J Environ Anal Toxicol S4:001. doi: 10.4172/2161-0525. S4-001
Thany SH (2009) Agonist actions of clothianidin on synaptic and extrasynaptic nicotinic acetylcholine receptors expressed on cockroach sixth abdominal ganglion. Neurotoxicology 30:1045–1052
Thany SH (2010) Neonicotinoid insecticides. Historical evolution and resistance mechanisms. In: Thany SH (Ed.) Insect nicotinic acetylcholine receptors. Adv Exp Med Biol 683:75–84
Thany SH (2011) Thiamethoxam, a poor agonist of nicotinic acetylcholine receptors expressed on isolated cell bodies, acts as a full agonist at cockroach cercal afferent/giant interneuron synapses. Neuropharmacology 60:587–592
Thany SH, Courjaret R, Lapied B (2008) Effect of calcium on nicotine-induced current expressed by an atypical alpha-bungarotoxin-insensitive nAChR2. Neurosci Lett 438:317–321
Thielert W, Metzlaff M, De Block M (2006) Increase of stress tolerance by application of neonicotinoids on plants engineered to be stress tolerant. Patent No. European Patent Application EP1731037
Thuyet DQ, Watanabe H, Motobayashi T (2011) Effect of formulations and treatment methods of nursery boxes applied with insecticide on the behavior of imidacloprid in rice paddy fields. J Pest Sci 36:9–15
Thuyet DQ, Jorgenson BC, Wissel-Tyson C, Watanabe H, Young TM (2012) Wash off of imidacloprid and fipronil from turf and concrete surfaces using simulated rainfall. Sci Total Environ 414:515–524. doi: 10.1016/j.scitotenv.2011.10.051
Tingle CCD, Rother JA, Dewhurst CF, Lauer S, King WJ (2003) Fipronil: environmental fate, ecotoxicology and human health concerns. Rev Environ Contam Toxicol 176:1–66
Tokieda M, Ozawa M, Gomyo T (1999) Methods of determination of acetamiprid and its degradation products in soil by gas chromatography. J Pest Sci 24:181–185
Tomizawa M, Casida JE (1997) I-125 Azidonicotinoid photoaffinity labeling of insecticide-binding subunit of Drosophila nicotinic acetylcholine receptor. Neurosci Lett 237:61–64
Tomizawa M, Casida JE (2000) Imidacloprid, thiacloprid, and their imine derivatives up-regulate the α4β2 nicotinic acetylcholinereceptor in M10 cells. Toxicol Appl Pharmacol 169:114–120
Tomizawa M, Casida JE (2001) Structure and diversity of insect nicotinic acetylcholine receptors. Pest Manag Sci 57:914–922
Tomizawa M, Casida JE (2002) Desnitro-imidacloprid activates the extracellular signal-regulated kinase cascade via the nicotinic receptor and intracellular calcium mobilization in N1E-115 cells. Toxicol Appl Pharmacol 184:180–186
Tomizawa M, Casida JE (2003) Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu Rev Entomol 48:339–364
Tomizawa M, Casida JE (2005) Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Pharmacol Toxicol 45:247–268
Tomizawa M, Casida JE (2009) Molecular recognition of neonicotinoid insecticides: the determinants of life or death. Acc Chem Res 42:260–269
Tomizawa M, Casida JE (2011) Neonicotinoid insecticides: highlights of a symposium on strategic molecular designs. J Agric Food Chem 59:2883–2886
Tomizawa M, Cowan A, Casida JE (2001a) Analgesic and toxic effects of neonicotinoid insecticides in mice. Toxicol Appl Pharmacol 177:77–83
Tomizawa M, Wen ZM, Chin HL, Morimoto H, Kayser H, Casida JE (2001b) Photoaffinity labeling of insect nicotinic acetylcholine receptors with a novel H-3 azidoneonicotinoid. J Neurochem 78:1359–1366
Tomizawa M, Zhang NJ, Durkin KA, Olmstead MM, Casida JE (2003) The neonicotinoid electronegative pharmacophore plays the crucial role in the high affinity and selectivity for the drosophila nicotinic receptor: an anomaly for the nicotinoid cation-pi interaction model. Biochemistry 42:7819–7827
Tomizawa M, Talley TT, Maltby D, Durkins KA, Medzihradszky KF, Burlingame AL, Taylor P, Casida JE (2007) Mapping the elusive neonicotinoid binding site. PNAS 104:9075–9080
Tomizawa M, Maltby D, Talley TT, Durkin KA, Medzihradszky KF, Burlingame AL, Taylor P, Casida JE (2008) Atypical nicotinic agonist bound conformations conferring subtype selectivity. PNAS 105:1728–1732
Tomlin CDS (2000) The pesticide manual. 12th Ed., The British Crop prot Council, Surrey, UK, pp.413-415
Toshima K, Ihara M, Kanaoka S, Tarumoto K, Yamada A, Sattelle DB, Matsuda K (2008) Potentiating and blocking actions of neonicotinoids on the response to acetylcholine of the neuronal alpha 4 beta 2 nicotinic acetylcholine receptor. J Pest Sci 33:146–151
United States Department of Agriculture (USDA) - National Agriculture Statistics Service (NASS), (2013) online database: Crop production 2013 summary. http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=10471
US Environmental Protection Agency (USEPA) (2000) Thiamethoxam; pesticide tolerance. Fed Regist 65:80343–80353
US Environmental Protection Agency (USEPA) (2003a) Factsheet - Clothianidin. 19 pp
US Environmental Protection Agency (USEPA) (2003b) Clothianidin; pesticide tolerance. Fed Regist 68:32390–32400
US Environmental Protection Agency (USEPA) (2003c) Dinotefuran; notice of filing a pesticide petition to establish a tolerance for a certain pesticide chemical in or on food. Fed Regist 68:39547–39554
US Environmental Protection Agency (USEPA) (2004a) Clothianidin; notice of filing a pesticide petition to establish a tolerance for a certain pesticide chemical in or on food. Fed Regist 69:33635–33638
US Environmental Protection Agency (USEPA) (2004b) Dinotefuran: conditional registration. Pesticide Fact Sheet, 63 pp
US Environmental Protection Agency (USEPA) (2013) Registration of the new active ingredient sulfoxaflor for use on multiple commodities, turgrass and ornamentals. United States Environmental Protection Agency http://www.regulations.gov/#!documentDetail;D=EPA-HQ-OPP-2010-0889-0396 . Accessed 7 Mar 2014
US Geological Survey (2014) Pesticide National Sysnthesis Project, Pesticide Use Maps Imidacloprid 2011 http://water.usgs.gov/nawqa/pnsp/usage/maps/show_map.php?year=2011&map=IMIDACLOPRID&hilo=L&disp=Imidacloprid . Accessed 7 March 2014
Van der Sluijs JP, Simon-Delso N, Goulson D, Maxim L, Bonmatin J-M, Belzunces LP (2013) Neonicotinoids, bee disorders and the sustainability of pollinator services. Curr Opin Environ Sustain 5:293–305. doi: 10.1016/j.cosust.2013.05.007
van Rozen K, Ester A (2010) Chemical control of Diabrotica virgifera virgifera LeConte. J Appl Entomol 134:376–384
Wakita T (2010) Molecular design of dinotefuran with unique insecticidal properties. J Agric Food Chem 59:2938–2942
Wakita T, Kinoshita K, Yamada E, Yasui N, Kawahara N, Naoi A, Nakaya M, Ebihara K, Matsuno H, Kodaka K (2003) The discovery of dinotefuran: a novel neonicotinoid. Pest Manag Sci 59:1016–1022
Wakita T, Kinoshita K, Kodaka K, Yasui N, Naoi A, Banba S (2004a) Synthesis and structure-activity relationships of dinotefuran derivatives: modification in the tetrahydro-3-furylmethyl part. J Pest Sci 29:356–363
Wakita T, Kinoshita K, Yasui N, Yamada E, Kawahara N, Kodaka K (2004b) Synthesis and structure-activity relationships of dinotefuran derivatives: modification in the nitroguanidine part. J Pest Sci 29:348–355
Wang KI, Guo QL, Xia XM, Wang HY, Liu TX (2007) Resistance of Aphis gossypii (Homoptera: Aphididae) to selected insecticides on cotton from five cotton production regions in Shandong, China. J Pest Sci 32:372–378
Wang Y, Chen J, Zhu YC, Ma C, Huang Y, Shen J (2008) Susceptibility to neonicotinoids and risk of resistance development in the brown planthopper, Nilaparvata lugens (Stal) (Homoptera: Delphacidae). Pest Manag Sci 64:1278–1284
Wang J, Hirai H, Kawagishi H (2012) Biotransformation of acetamiprid by the white-rot fungus Phanerochaete sordida YK-624. Appl Microbiol Biotechnol 93:831–835
Wang G, Yue W, Liu Y, Li F, Xiong M, Zhang H (2013a) Biodegradation of the neonicotinoid insecticide Acetamiprid by bacterium Pigmentiphaga sp. strain AAP-1 isolated from soil. Bioresour Technol 138:359–368
Wang G, Zhao Y, Gao H, Yue W, Xiong M, Li F, Zhang H, Ge W (2013b) Co-metabolic biodegradation of acetamiprid by Pseudoxanthomonas sp. AAP-7 isolated from a long-term acetamiprid-polluted soil. Bioresour Technol 150:259–265
Watson GB, Loso MR, Babcock JM, Hasler JM, Letherer TJ, Young CD, Zhu Y, Casida JE, Sparks TC (2011) Novel nicotinic action of the sulfoximine insecticide sulfoxaflor. Insect Biochem Mol Biol 41:432–439
Wiesner P, Kayser H (2000) Characterization of nicotinic acetylcholine receptors from the insects Aphis craccivora, Myzus persicae, and Locusta migratoria by radioligand binding assays: relation to thiamethoxam action. J Biochem Mol Toxicol 14:221–230
Wu M, Cai J, Yao J, Dai B, Lu Y (2010) Study of imidaclothiz residues in cabbage and soil by HPLC with UV detection. Bull Environ Contam Toxicol 84:289–293
Ying GG, Kookana RS (2006) Persistence and movement of fipronil termiticide with under-slab and trenching treatments. Environ Toxicol Chem 25:2045–2050
Yokota T, Mikata K, Nagasaki H, Ohta K (2003) Absorption, tissue distribution, excretion, and metabolism of clothianidin in rats. J Agric Food Chem 51:7066–7072
Žabar R, Komel T, Fabjan J, Kralj MB, Trebše P (2012) Photocatalytic degradation with immobilised TiO < sub > 2</sub > of three selected neonicotinoid insecticides: imidacloprid, thiamethoxam and clothianidin. Chemosphere 89:293–301
Zhang NJ, Tomizawa M, Casida JE (2002) Structural features of azidopyridinyl neonicotinoid probes conferring high affinity and selectivity for mammalian alpha 4 beta 2 and Drosophila nicotinic receptors. J Med Chem 45:2832–2840
Zhang NJ, Tomizawa M, Casida JE (2003) 5-azidoepibatidine: an exceptionally potent photoaffinity ligand for neuronal alpha 4 beta 2 and alpha 7 nicotinic acetylcholine receptors. Bioorg Med Chem Lett 13:525–527
Zhang Y, Liu S, Gu J, Song F, Yao X, Liu Z (2008) Imidacloprid acts as an antagonist on insect nicotinic acetylcholine receptor containing the Y151M mutation. Neurosci Lett 446:97–100
Zhang X, Liu X, Zhu F, Li J, You H, Lu P (2014) Field evolution of insecticide resistance in the brown planthopper (Nilaparvata lugens Stål) in China. Crop Prot 58:61–66. doi: 10.1016/j.cropro.2013.12.026
Zhao Y-J, Dai Y-J, Yu C-G, Luo J, Xu W-P et al (2009) Hydroxylation of thiacloprid by bacterium Stenotrophomonas maltophilia CGMCC1.1788. Biodegradation 20:761–768. doi: 10.1007/s10532-009-9264-0