Systemic dysregulation of TDP-43 binding microRNAs in amyotrophic lateral sclerosis
Tóm tắt
A pathological hallmark of most amyotrophic lateral sclerosis (ALS) cases are intracellular aggregates of the protein TDP-43. The pathophysiological relevance of TDP-43 is underlined by familial ALS cases caused by TDP-43 mutations. TDP-43 is involved in processing of both coding RNAs and microRNAs, which are key epigenetic regulators of transcriptome plasticity and suspected to contribute to neurological diseases. We therefore asked whether the TDP-43 binding microRNAs recently identified in cell lines are also dysregulated in ALS patients. We compared their abundance in cerebrospinal fluid (CSF), serum and immortalized lymphoblast cell lines (LCLs) derived from ALS patients and healthy controls. We found that expression levels of 5 out of 9 TDP-43 binding microRNAs were altered in the CSF and serum of sporadic ALS cases. The differentially regulated serum microRNAs together with a poor correlation between CSF and serum levels indicate a systemic dysregulation of microRNA abundance independent from the CSF compartment, in line with the ubiquitous expression of TDP-43. The most strongly regulated microRNAs could be confirmed in LCLs from genetically defined ALS patients. While dysregulation of miR-143-5p/3p seems to be a common feature of ALS pathology, downregulation of miR-132-5p/3p and miR-574-5p/3p was evident in sporadic, TARDBP, FUS and C9ORF72, but not SOD1 mutant patients. This parallels the TDP-43 pathology found in most ALS cases, but usually not in patients with SOD1 mutation. We thus report a systemic and genotype-dependent dysregulation of TDP-43 binding microRNAs in human biomaterial that might reflect an easily accessible biological measure of TDP-43 dysfunction. Furthermore we suggest an independent regulation of TDP-43 binding microRNAs in the serum and CSF compartment as well as a generally low transition of microRNAs across the blood-cerebrospinal fluid barrier.
Tài liệu tham khảo
Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, Ackerley S, Durnall JC, Williams KL, Buratti E, Baralle F, de Belleroche J, Mitchell JD, Leigh PN, Al-Chalabi A, Miller CC, Nicholson G, Shaw CE: TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Sci 2008, 319: 1668–1672. 10.1126/science.1154584
Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan JP, Deng HX, Rahmani Z, Krizus A, McKenna-Yasek D, Cayabyab A, Gaston S, Berger R, Tanzi RE, Halperin JJ, Herzfeldt B, van den Bergh R, Hung W-Y, Bird T, Deng G, Mulder DW, Smyth C, Lain NG, Soriano E, Pericak-Vance MA, Haines J, Rouleau GA, Gusella JS, Horvitz R, Brown RH Jr: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993, 362: 59–62. 10.1038/362059a0
Byrne S, Elamin M, Bede P, Shatunov A, Walsh C, Corr B, Heverin M, Jordan N, Kenna K, Lynch C, McLaughlin RL, Iyer PM, O'Brien C, Phukan J, Wynne B, Bokde AL, Bradley DG, Pender N, Al-Chalabi A, Hardiman O: Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study. Lancet Neurol 2012, 11: 232–240. 10.1016/S1474-4422(12)70014-5
DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J, Kouri N, Wojtas A, Sengdy P, Hsiung GY, Karydas A, Seeley WW, Josephs KA, Coppola G, Geschwind DH, Wszolek ZK, Feldman H, Knopman DS, Petersen RC, Miller BL, Dickson DW, Boylan KB, Graff-Radford NR, Rademakers R: Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011, 72: 245–256. 10.1016/j.neuron.2011.09.011
Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T, Valdmanis P, Rouleau GA, Hosler BA, Cortelli P, de Jong PJ, Yoshinaga Y, Haines JL, Pericak-Vance MA, Yan J, Ticozzi N, Siddique T, McKenna-Yasek D, Sapp PC, Horvitz HR, Landers JE, Brown RH Jr: Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Sci 2009, 323: 1205–1208. 10.1126/science.1166066
Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL, Sreedharan J, Hu X, Smith B, Ruddy D, Wright P, Ganesalingam J, Williams KL, Tripathi V, Al-Saraj S, Al-Chalabi A, Leigh PN, Blair IP, Nicholson G, de Belleroche J, Gallo JM, Miller CC, Shaw CE: Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Sci 2009, 323: 1208–1211. 10.1126/science.1165942
Andersen PM, Al-Chalabi A: Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat Rev Neurol 2011, 7: 603–615. 10.1038/nrneurol.2011.150
Al-Chalabi A, Jones A, Troakes C, King A, Al-Sarraj S, van den Berg LH: The genetics and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathol 2012, 124: 339–352. 10.1007/s00401-012-1022-4
Mackenzie IR, Bigio EH, Ince PG, Geser F, Neumann M, Cairns NJ, Kwong LK, Forman MS, Ravits J, Stewart H, Eisen A, McClusky L, Kretzschmar HA, Monoranu CM, Highley JR, Kirby J, Siddique T, Shaw PJ, Lee VM, Trojanowski JQ: Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol 2007, 61: 427–434. 10.1002/ana.21147
Neumann M, Kwong LK, Lee EB, Kremmer E, Flatley A, Xu Y, Forman MS, Troost D, Kretzschmar HA, Trojanowski JQ, Lee VM: Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol 2009, 117: 137–149. 10.1007/s00401-008-0477-9
Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VM: Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Sci 2006, 314: 130–133. 10.1126/science.1134108
Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R: The Microprocessor complex mediates the genesis of microRNAs. Nature 2004, 432: 235–240. 10.1038/nature03120
Fukuda T, Yamagata K, Fujiyama S, Matsumoto T, Koshida I, Yoshimura K, Mihara M, Naitou M, Endoh H, Nakamura T, Akimoto C, Yamamoto Y, Katagiri T, Foulds C, Takezawa S, Kitagawa H, Takeyama K, O'Malley BW, Kato S: DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol 2007, 9: 604–611. 10.1038/ncb1577
Kawahara Y, Mieda-Sato A: TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes. Proc Natl Acad Sci USA 2012, 109: 3347–3352. 10.1073/pnas.1112427109
Chekulaeva M, Filipowicz W: Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol 2009, 21: 452–460. 10.1016/j.ceb.2009.04.009
Junn E, Lee KW, Jeong BS, Chan TW, Im JY, Mouradian MM: Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci USA 2009, 106: 13052–13057. 10.1073/pnas.0906277106
De Felice B, Guida M, Coppola C, De Mieri G, Cotrufo R: A miRNA signature in leukocytes from sporadic amyotrophic lateral sclerosis. Gene 2012, 508: 35–40. 10.1016/j.gene.2012.07.058
Kim VN, Han J, Siomi MC: Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 2009, 10: 126–139. 10.1038/nrm2632
Buratti E, De Conti L, Stuani C, Romano M, Baralle M, Baralle F: Nuclear factor TDP-43 can affect selected microRNA levels. FEBS J 2010, 277: 2268–2281. 10.1111/j.1742-4658.2010.07643.x
Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001, 29: e45. 10.1093/nar/29.9.e45
Soreq H, Wolf Y: NeurimmiRs: microRNAs in the neuroimmune interface. Trends Mol Med 2011, 17: 548–555. 10.1016/j.molmed.2011.06.009
Jiang J, Lee EJ, Schmittgen TD: Increased expression of microRNA-155 in Epstein-Barr virus transformed lymphoblastoid cell lines. Genes Chromosomes Cancer 2006, 45: 103–106. 10.1002/gcc.20264
Linnstaedt SD, Gottwein E, Skalsky RL, Luftig MA, Cullen BR: Virally induced cellular microRNA miR-155 plays a key role in B-cell immortalization by Epstein-Barr virus. J Virol 2010, 84: 11670–11678. 10.1128/JVI.01248-10
Morlando M, Dini Modigliani S, Torrelli G, Rosa A, Di Carlo V, Caffarelli E, Bozzoni I: FUS stimulates microRNA biogenesis by facilitating co-transcriptional Drosha recruitment. EMBO J 2012, 31: 4502–4510. 10.1038/emboj.2012.319
Xu J, Zhao J, Evan G, Xiao C, Cheng Y, Xiao J: Circulating microRNAs: novel biomarkers for cardiovascular diseases. J Mol Med (Berl) 2012, 90: 865–875. 10.1007/s00109-011-0840-5
Ince PG, Highley JR, Kirby J, Wharton SB, Takahashi H, Strong MJ, Shaw PJ: Molecular pathology and genetic advances in amyotrophic lateral sclerosis: an emerging molecular pathway and the significance of glial pathology. Acta Neuropathol 2011, 122: 657–671. 10.1007/s00401-011-0913-0
Wegorzewska I, Bell S, Cairns NJ, Miller TM, Baloh RH: TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 2009, 106: 18809–18814. 10.1073/pnas.0908767106
Arnold ES, Ling SC, Huelga SC, Lagier-Tourenne C, Polymenidou M, Ditsworth D, Kordasiewicz HB, McAlonis-Downes M, Platoshyn O, Parone PA, Da Cruz S, Clutario KM, Swing D, Tessarollo L, Marsala M, Shaw CE, Yeo GW, Cleveland DW: ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proc Natl Acad Sci USA 2013, 110: E736-E745. 10.1073/pnas.1222809110
Wils H, Kleinberger G, Janssens J, Pereson S, Joris G, Cuijt I, Smits V, Ceuterick-de Groote C, Van Broeckhoven C, Kumar-Singh S: TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 2010, 107: 3858–3863. 10.1073/pnas.0912417107
Shan X, Chiang PM, Price DL, Wong PC: Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic mice. Proc Natl Acad Sci USA 2010, 107: 16325–16330. 10.1073/pnas.1003459107
Chen-Plotkin AS, Unger TL, Gallagher MD, Bill E, Kwong LK, Volpicelli-Daley L, Busch JI, Akle S, Grossman M, Van Deerlin V, Trojanowski JQ, Lee VM: TMEM106B, the risk gene for frontotemporal dementia, is regulated by the microRNA-132/212 cluster and affects progranulin pathways. J Neurosci 2012, 32: 11213–11227. 10.1523/JNEUROSCI.0521-12.2012
Johanson CE, Stopa EG, McMillan PN: The blood-cerebrospinal fluid barrier: structure and functional significance. Methods Mol Biol 2011, 686: 101–131. 10.1007/978-1-60761-938-3_4
Lawton KA, Cudkowicz ME, Brown MV, Alexander D, Caffrey R, Wulff JE, Bowser R, Lawson R, Jaffa M, Milburn MV, Ryals JA, Berry JD: Biochemical alterations associated with ALS. Amyotroph Lateral Scler 2012, 13: 110–118. 10.3109/17482968.2011.619197
Dupuis L, Oudart H, Rene F, de Aguilar JL G, Loeffler JP: Evidence for defective energy homeostasis in amyotrophic lateral sclerosis: benefit of a high-energy diet in a transgenic mouse model. Proc Natl Acad Sci USA 2004, 101: 11159–11164. 10.1073/pnas.0402026101
Kolde G, Bachus R, Ludolph AC: Skin involvement in amyotrophic lateral sclerosis. Lancet 1996, 347: 1226–1227. 10.1016/S0140-6736(96)90737-0
Wanet A, Tacheny A, Arnould T, Renard P: miR-212/132 expression and functions: within and beyond the neuronal compartment. Nucleic Acids Res 2012, 40: 4742–4753. 10.1093/nar/gks151
Strong MJ: The evidence for altered RNA metabolism in amyotrophic lateral sclerosis (ALS). J Neurol Sci 2010, 288: 1–12. 10.1016/j.jns.2009.09.029
Borralho PM, Kren BT, Castro RE, da Silva IB, Steer CJ, Rodrigues CM: MicroRNA-143 reduces viability and increases sensitivity to 5-fluorouracil in HCT116 human colorectal cancer cells. FEBS J 2009, 276: 6689–6700. 10.1111/j.1742-4658.2009.07383.x
Xin M, Small EM, Sutherland LB, Qi X, McAnally J, Plato CF, Richardson JA, Bassel-Duby R, Olson EN: MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev 2009, 23: 2166–2178. 10.1101/gad.1842409
Wu CH, Fallini C, Ticozzi N, Keagle PJ, Sapp PC, Piotrowska K, Lowe P, Koppers M, McKenna-Yasek D, Baron DM, Kost JE, Gonzalez-Perez P, Fox AD, Adams J, Taroni F, Tiloca C, Leclerc AL, Chafe SC, Mangroo D, Moore MJ, Zitzewitz JA, Xu ZS, van den Berg LH, Glass JD, Siciliano G, Cirulli ET, Goldstein DB, Salachas F, Meininger V, Rossoll W, et al.: Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature 2012, 488: 499–503. 10.1038/nature11280
Ingre C, Landers JE, Rizik N, Volk AE, Akimoto C, Birve A, Hubers A, Keagle PJ, Piotrowska K, Press R, Andersen PM, Ludolph AC, Weishaupt JH: A novel phosphorylation site mutation in profilin 1 revealed in a large screen of US, Nordic, and German amyotrophic lateral sclerosis/frontotemporal dementia cohorts. Neurobiol Aging 2013, 34: 1708. e1701–1706