Kháng Tự Nhiên Hệ Thống Và Axit Salicylic: Tình Trạng Hiện Tại Của Kiến Thức

Springer Science and Business Media LLC - Tập 107 - Trang 13-18 - 2001
Jean-Pierre Métrauxs1
1Département de Biologie, Université de Fribourg, Fribourg, Switzerland

Tóm tắt

Thực vật có khả năng kích hoạt các phản ứng phòng thủ đối phó với nhiều loại tác nhân gây bệnh nhờ vào việc tiếp xúc trước với các tác nhân gây bệnh, các hóa chất khác nhau hoặc áp lực vật lý. Kháng sinh được khởi phát sẽ được thể hiện tại chỗ, tại vị trí nhiễm bệnh hoặc toàn thân, tại những vị trí xa xôi so với điểm nhiễm ban đầu. Các phản ứng xảy ra tại chỗ trong lá khởi phát, tín hiệu toàn thân và các phản ứng trong lá trên sẽ được xem xét ngắn gọn ở đây, với sự nhấn mạnh đặc biệt vào vai trò của axit salicylic trong quá trình này.

Từ khóa


Tài liệu tham khảo

Bent A, Yu IC, Clough S, Lippok B and Fengler K (1999) Arabidopis defense-no-death mutants: loss of HR and induction of systemic resistance. 9th Int. Congress Molec. Plant-Microbe Interact., Amsterdam, Int. Soc. MPMI Bonas U and Van den Ackerveken G (1999) Gene-for-gene interactions: bacterial avirulence proteins specify plant disease resistance. Curr Opinion in Microbiol 2: 94-98 Carbone D and Arnaudi C (1930) L'immunitä nelle piante. Monografie dell'Istituto Sieroterapico Milanese, Milano Chen ZX, Silva H and Klessig DF (1993) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262: 1883-1886 Chester KS (1933) The problem of acquired physiological immunity in plants. Quart Rev Biol 8: 275-324 Conrath U, Thulke O, Katz V, Schwindling S and Kohler A (2001) Priming as a mechanism in induced systemic resistance of plants. Eur J Plant Path 107: 113-119 Coquoz JL, Buchala A and Métraux JP (1998) The biosynthesis of salicylic acid in potato plants. Plant Physiol 117: 1095-1101 Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negretto D, Gaffney T, Gut-Rella M, Kessmann H and Ward E (1994) A central role of salicylic acid in plant disease resistance. Science 266: 1247-1249 Despres C, DeLong C, Glaze S, Liu E and Forbert PR (2000) The Arabidopsis NPR1/MIM1 protein interacts with a subgroup of the TGA family of bZIP transcription factors. Plant Cell 12: 279-290 Du H and Klessig DF (1997) Identification of a soluble, highaffinity salicylic acid-binding protein in tobacco. Plant Physiol 113: 1319-1327 Durner J and Klessig DF (1995) Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses. PNAS USA 92: 11312-11316 Ellis J, Dodds P and Pryor T (2000) Structure, function and evolution of plant disease resistance genes. Curr Opinion Plant Biol 3: 278-284 Farmer EE, Weber H and Vollenweider S (1998) Fatty acid signaling in Arabidopsis. Planta 206: 167-174 Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H and Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261: 754-756 Gäumann E (1946) Pflanzliche Infektionslehre. Basel, Birkhäuser Genoud T and Métraux JP (1999) Crosstalk in plant cell signaling: structure and function of the genetic network. Trends Plant Sci 4: 503-507 Gilchrist DG (1998) Programmed cell death in plant disease: the purpose and promise of cellular suicid. Annu Rev Phytopatol 36: 393-414 Glazebrook J (1999) Genes controlling expression of defense responses in Arabidopsis. Curr Opinion Plant Biol 2: 280-286 Grant M and Mansfield J (1999) Early events in host-pathogen interactions. Curr Opinion Plant Biol 2: 312-319 Hammerschmidt R (1999a) Induced disease resistance: how do induced plants stop pathogens? Physiol Mol Plant Pathol 55: 77-84 Hammerschmidt R (1999b) Phytoalexins: what have we learned after 60 years? Annu Rev Phytopathol 37: 285-306 Hammond-Kosack KE and Jones JDG (1997) Plant disease resistance genes. Annu Rev of Plant Physiol Plant Mol Biol 48: 575-607 Hunt MD and Ryals JA (1996) Systemic acquired resistance signal transduction. Crit Rev Plant Sci 15: 583-606 Katz VA, Thulke OU and Conrath U (1998) A benzothiadiazole primes parsley cells for augmented elicitation of defense responses. Plant Physiol 117: 1333-1339 Kauss H, Fauth M, Merten A and Jeblick W (1999) Cucumber hypocotyls respond to cutin monomers via both an inducible and a constitutive H2O2-generating system. Plant Physiol 120: 1175-1182 Kohler C, Merkle T and Neuhaus G (1999) Characterisation of a novel gene family of putative cyclic nucleotide-and calmodulin-regulated ion channels in Arabidopsis thaliana. Plant J 18: 97-104 Lamb C and Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48: 251-275 Li X, Zhang YL, Clarke JD, Li Y and Dong XN (1999) Identification and cloning of a negative regulator of systemic acquired resistance, SNlI1, through a screen for suppressors of npr1-1. Cell 98: 329-339 Madamanchi NR and Kuć J (1991) Induced systemic resistance in plants. In: Cole GT and Hoch HC (eds) The fungal spore and disease initiation in plants and animals (pp 347-362) Plenum Press, New York Meyers B, Dickermann AW, Michelmore RW, Sivamakrishnan S, Sbral BW and Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20: 317-323 Mölders W, Buchala A and Métraux JP (1996) Transport of salicylic acid in tobacco necrosis virus-infected cucumber plants. Plant Physiol 112: 787-792 Morel JB and Dangl J (1997) The hypersensitive response and the induction of cell death in plants. Cell Death and Diff 19: 17-24 Nawrath C and Métraux JP (1999) Salicylic acid inductiondeficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11: 1393-1404 Pieterse CMJ and Van LoonL C(1999) Salicylic acid-independent plant defence pathways. Trends in Plant Sci 4: 52-58 Pieterse CMJ, Vanwees SCM, Vanpelt JA, Knoester M, Laan R, Gerrits N, Weisbeek PJ and Van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10: 1571-1580 Ross AF (1966) Systemic effects of local lesion formation. In: Beemster ABR and Dijkstra J (eds) Viruses of plants (pp 127-150) North-Holland Publishing, Amsterdam Schalk M, Cabellohurtado F, Pierrel MA, Atanossova R, Saindrenan P and Werckreichhart D (1998) Piperonylic acid, a selective, mechanism-based inactivator of the trans-cinnamate 4-hydroxylase: A new tool to control the flux of metabolites in the phenylpropanoid pathway. Plant Physiol 118: 209-218 Shulaev V, Leon J and Raskin I (1995) Is salicylic acid a translocated signal of systemic acquired resistance in tobacco? Plant Cell 7: 1691-1701 Sticher L, Mauch-Mani B and Métraux JP (1997) Systemic acquired resistance. Annu Rev Plant Pathol 35: 235-270 Thulke O and Conrath U (1998) Salicylic acid has a dual role in the activation of defence-related genes in parsley. Plant J 14: 35-42 Van Loon LC (1997) Induced resistance in plants and the role of pathogenesis-related proteins. Euro J Plant Pathol 103: 753-765 Van Loon LC and Van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55: 85-97 Yang PZ, Chen CH, Wang ZP, Fan BF and Chen ZX (1999) A pathogen-and salicylic acid-induced WRKY DNA-binding activity recognizes the elicitor response element of the tobacco class I chitinase gene promoter. Plant J 18: 141-149 Young ND (2000) The genetic architecture of resistance. Curr Opinions Plant Sci 3: 28-290 Yu IC, Parker J and Bent AF (1998) Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. PNAS USA 95: 7819-7824 Zhang SQ and Klessig DF (1997) Salicylic acid activates a 48-kD MAP kinase in tobacco. Plant Cell 9: 809-824 Zhang YL, Fan WH, Kinkema M, Li X and Dong XN (1999) Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. PNAS USA 96: 6523-6528 Zhou JM, Trifa Y, Silva H, Pontier D, Lam E, Shah J and Klessig DF (2000) NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. MPMI 13: 191-202