Systematics of 2H patterns in natural compounds and its importance for the elucidation of biosynthetic pathways
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adam P, Hecht S, Eisenreich W, Kaiser J, Gräwert T, Arigoni D, Bacher A & Rohdich F (2002) Biosynthesis of terpenes. Studies on 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase. Proc. Natl. Acad. Sci. USA 99: 12108–12113.
Aleu J, Fronza G, Fuganti C, Serra S, Fauhl C, Guillou C & Reniero F (2002) Differentiation of natural and synthetic phenylacetic acids by 2H NMR of the derived benzoic acids. Eur. Food Res. Technol. 214: 63–66.
Altincicek B, Duin EC, Reichenberg A, Hedderich R, Kollas AK, Hintz M, Wagner S, Wiesner J, Beck E & Jomma H (2002) LytB protein catalyses the terminal step of the 2-C-methyl-D-erythritol-4-phosphate pathway of isoprenoid biosynthesis. FEBS Lett. 523: 437–440.
Anderson VE (1991) Isotope effects on enzyme-catalysed ßeliminations. In: Cook PF (ed), Enzyme Mechanism from Isotope Effects (pp. 389–417). CRC Press, Boca Raton.
Arigoni D, Cane DE, Shim JH, Croteau R & Wagschal K (1993) Monoterpene cyclisation mechanisms and the use of natural abundance deuterium NMR – short cut or primrose path? Phytochem. 32: 623–631.
Aursand M, Mabon F & Martin GJ (1997) High-resolution 1H and 2H NMR spectroscopy of pure essential fatty acids for plants and animals. Magn. Reson. Chem. 35: S91–S100.
Bahnson BJ & Anderson VE (1991) Crotonase-catalysed δ-elimination is concerted – a double isotope effect study. Biochem. 30: 5894–5906.
Barr SA, Bowers N, Boyd DR, Sharma ND, Hamilton L, Austin R, McMordie S & Dalton H (1998) The potential role of cisdihydrodiol intermediates in bacterial aromatic hydroxylation and the NIH Shift. J. Chem. Soc., Perkin Trans. 1: 3443–3451.
Behrouzian B, Fauconnot L, Daligault F, Nugier-Chauvin C, Patin H & Buist PH (2001) Mechanism of fatty acid desaturation in the green alga Chlorella vulgaris. Europ. J. Biochem. 268: 3545–3549.
Billault I, Guiet S, Mabon F & Robins R (2001) Natural deuterium distribution in long-chain fatty acids is nonstatistical: A site-specific study by quantitative 2H NMR spectroscopy. ChemBioChem 2: 425–431.
Blanchard JS & Wong KK (1991) Isotope effects on enzymecatalysed redox reactions. In: Cook PF (ed), EnzymeMechanism from Isotope Effects (pp. 341–365). CRC Press, Boca Raton.
Brand WA (1996) High precision isotope ratio monitoring techniques in mass spectrometry. J. Mass Spectrom. 31: 225–235.
Brodsky AE (1961) Isotopenchemie. Akademie-Verlag, Berlin, p. 104.
Budesinsky Z, Protiva M (1961) Ephedrin. In: Knobloch W (ed) Synthetische Arzneimittel (pp. 24–27). Akademie Verlag Berlin.
Buist PH & Behrouzian B (1998) Deciphering the cryptoregiochemistry of oleate Δ12 desaturase: A kinetic isotope effect study. J. Am. Chem. Soc. 120: 871–876.
Butzenlechner M, Roßmann A & Schmidt H-L (1988) Assignment of bitter almond oil to natural and synthetic sources by stable isotope ratio analysis. J. Agric. Food Chem. 37: 410–412.
Carle R, Beyer J, Chemina A & Krempp E (1992) 2H NMR determination of site-specific natural isotope fractionation in (-)-δ-bisabolole. Phytochem. 31: 171–174.
Chikaraishi Y & Naraoka H (2001) Organic hydrogen isotope signatures of terrestrial higher plants during biosynthesis for distinct photosynthetic pathways. Geochim. J. 35: 451–458.
Coplen TB (1988). Normalisation of oxygen and hydrogen data. Chem. Geol. (Isot. Geosci. Sect.) 72: 293–297.
Daly JW, Jerina DM & Witkop B (1972) Arene oxides and the NIH shift: The metabolism, toxicity and carcenogenicity of aromatic compounds. Experientia 28: 1129–1149.
Deiana M, Corongiu FP, Dessi MA, Scano P, Casu M & Lai A (2001) NMR determination of site-specific deuterium distribution (SNIF-NMR) in squalene from different sources. Magn. Reson. Chem. 39: 29–32.
Duan J-R, Billault I, Mabon F & Robins R (2002) Natural deuterium distribution in fatty acids isolated from peanut seed oil: A site-specific study by quantitative 2H NMR spectroscopy. ChemBioChem 3: 752–759.
Eisenreich W, Schwarz M, Cartayrade A, Arigoni D, Zenk MH, Bacher A (1998) The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chem. Biol. 5, R221–R233.
Eisenreich W, Rohdich F, Bacher A (2001) Deoxyxylulose phosphate pathway to terpenoids. Trends Plant Sci. 6: 78–87.
Estep MF & Hoering TC (1980) Biogeochemistry of the stable hydrogen isotopes. Geochim. Cosmochim. Acta 44: 1197–1206.
Farquhar GD, Hubick KT, Codon AG & Richards RA (1989) Carbon isotope fractionation and plant water-use efficiency. In: Rundel PW, Ehleringer JR & Nagy KA (eds) Stable Isotopes in Ecological Research (pp. 21–40). Springer Verlag, New York.
Fitzpatrick PF (1994) Kinetic isotope effects on hydroxylation of ring-deuterated phenylalanines by tyrosine hydroxylase provide evidence against partitioning of an arene oxide intermediate. J. Am. Chem. Soc. 116: 1133–1134.
Flanagan LB, Bain JF & Ehleringer JR (1991) Stable oxygen and hydrogen isotope composition of leaf water in C3 and C4 plant species under field conditions. Oecologia 88: 394–400.
Florova G, Kazanina G & Reynolds KA (2002) Enzymes involved in fatty acid and polyketide biosynthesis in Streptomyces glaucescens: Role of FabH and FabD and their acyl carrier protein specificity. Biochem. 41: 10462–10471.
Fogel ML & Cifuentes LA (1993) Isotope fractionation during primary production. In: Engel MH & Macko S (eds) Organic Geochemistry. Principles and Application (pp. 73–98). Plenum Press, New York.
Fronza G, Fuganti C, Pedrocchi-Fantoni G, Serra S & Zucchi G (1999) Stable isotope characterization of raspberry ketone extracted from Taxus baccata and obtained by oxidation of the accompanying alcohol (betuligenol). J. Agric. Food Chem. 47: 1150–1155.
Fronza G, Fuganti C, Schmidt H-L & Werner RA (2002a) The δ18Ovalue of the p-OH group of L-tyrosine permits the assignment of its origin to plant or animal sources. Eur. Food Res. Technol. 215: 55–58.
Fronza G, Fuganti C, Serra S, Cisero M & Koziet J (2002b) Stable isotope labelling pattern of resveratrol and related natural stilbenes. J. Agric. Food Chem. 50: 2748–2754.
Galimov EM (1985) The Biological Fractionation of Isotopes, Academic Press, London.
García-Martín ML, Ballesteros P, Cerdón S (2001) The metabolism of water in cells and tissues detected by NMR methods. Progr. Nucl. Magn. Res. Spectros. 39: 41–47.
Gassner G, Wang LH, Batie C & Ballou DP (1994) Reaction of phthalate dioxygenase reductase with NADH and NAD – Kinetic and spectral characterization of intermediates. Biochem. 33, 12184–12193.
Gleixner G & Schmidt H-L (1997) Carbon isotope effects on the fructose-1,6-bisphosphate aldolase reaction, origin for nonstatistical 13C distribution in carbohydrates. J. Biol. Chem. 272: 537–540.
Gonfinianti R, Stichler W & Rozanski K (1995) Standards and intercomparison materials distributed by the International Atomic Energy Agency for stable isotope measurements. In IAEA, Reference and intercomparison materials for stable isotopes of light elements. Proceedings of a consultant meeting held in Vienna, 1–3 December 1993, IAEA-Tecdoc-825, Vienna, pp. 13–29.
Haslam E (1993) Shikimic Acid, Metabolism and Metabolites. John Wiley & Sons, Chichester.
Hayes JM (2001) Fractionation of the isotopes of carbon and hydrogen in biosynthetic processes. In: Valley JW & Cole DR (eds) Stable Isotope Geochemistry. Reviews in Mineralogy and Geochemistry, Vol. 43 (pp. 225–277). Mineralogical Society of America, Washington DC, USA.
Hoeffler J-F, Hemmerlin A, Grosdemange-Billiard C, Bach TJ & Rohmer M (2002) Isoprenoid biosynthesis in higher plants and in Escherichia coli: On the branching in the methylerythritol phosphate pathway and the independent biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate. Biochem. J. 366: 573–583.
International Organization for Standardization (1992) ISO–31–0, Quantities and Units, Part 0, General Principles, subclause 2.3.3. Geneva, International Organization for Standardization, 7 p.
Ivlev AA (2001) Carbon isotope effects (13C/12C) in biological systems. Sep. Sci. Technol. 36: 1819–1914.
Joulain D (2002) Stable isotopes for determining the origin of flavour and fragrance components: Recent findings. In: Swift KAD (ed) Advances in Flavours and Fragrances. From the Sensation to the Synthesis (pp. 84–91). Royal Society of Chemistry, Cambridge.
Jux A, Gleixner G & Boland W (2001) Classification of terpenoids according to the methylerythritophosphate or the mevalonate pathway with natural 13C/12C isotope ratios: Dynamic allocation of resources in induced plants. Angew. Chem. Int. Ed. 40: 2091–2093.
Kollas A-K, Duin EC, Eberl M, Altincicek B, Hintz M, Reichenberg A, Henschker D, Henne A, Steinbrecher I, Ostrovsky DN, Hedderich R, Beck E, Jomaa H & Wiesner J (2002) Functional characterisation of GcpE, an essential enzyme of the non-mevalonate pathway of isoprenoids. FEBS Lett. 532: 432–436.
Lai A, Casu M, Saba G, Corongiu FP & Dessi MA (1995) NMR investigation of the intramolecular distribution of deuterium in natural triacylglycerols. Magn. Res. Chem. 33: 163–166.
Leichus BN & Blanchard JS (1994) Isotopic analysis of the reaction catalysed by glycerol dehydrogenase. Biochem. 33: 14642–14649.
Lichtenthaler HK (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 50: 47–65.
Luo Y & Sternberg L (1991) Deuterium heterogeneity in starch and cellulose nitrate of CAM and C3 plants. Phytochem. 30: 1095–1098.
Luo Y-H, Sternberg L, Suda S, Kumazawa S & Mitsui A (1991) Extremely low D/H ratios of photoproduced hydrogen by cyanobacteria. Plant Cell Physiol. 32: 897–900.
Manitto P, Monti D & Speranza G (2000) Evidence for an NIH shift as the origin of the apparently anomalous distribution of deuterium in estragole from Artemisia dracunculus. J. Nat. Prod. 63: 713–715.
Marcinkeviciene J, Jiang W, Kopcho LM, Locke G, Luo Y & Copeland RA (2001) Enoyl-ACP reductase (FabI) of Haemophilus influenzae: steady-state kinetic mechanism and inhibition by triclosan and hexachlorophene. Arch. Biochem. Biophys. 390: 101–108.
Markai S, Marchand PA, Mabon F, Baguet E, Billault I & Robins RJ (2002) Natural deuterium distribution in branched-chain medium length fatty acids is non-statistical: A site-specific study by quantitative 2H NMR spectroscopy of the fatty acids of capsaicinoids. ChemBioChem 3: 212–218.
Martin GJ, Martin ML, Mabon F & Bricout J (1982) A new method for the identification of the origin of natural products. Quantitative 2H NMR at the natural abundance level applied to the characterization of anetholes. J. Am. Chem. Soc. 104: 2658–2659.
Martin GJ, Zhang BL, Naulet N & Martin ML (1986) Deuterium transfer in the bioconversion of glucose to ethanol studied by specific isotope labeling at the natural abundance level. J. Am. Chem. Soc. 108: 5116–5122.
Martin GJ, Martin ML & Zhang B-L (1992) Site-specific natural isotope fractionation of hydrogen in plant products studied by nuclear magnetic resonance. Plant Cell Environm. 15: 1037–1050.
Martin GJ (1995) Inference of metabolic and environmental effects from the NMR determination of natural deuterium isotopomers. In: Wada E, Yoneyama T, Minagawa M, Ando T & Fry BD (eds), Stable Isotopes in the Biosphere (pp. 36–56). Kyoto University Press, Japan.
Martin GJ & Martin ML (1999) Thirty years of flavor NMR. In: R Teranishi, EL Wick & I Hornstein (eds) Flavor Chemistry, Thirty Years of Progress, Kluver Academic/Plenum Publishers, New York, pp. 19–41.
Martin ML & Martin GJ (1991) Deuterium NMR in the study of site-specific natural isotope fractionation (SNIF-NMR). In: Diehl P, Fluck E, Günther H, Kosfeld R & Seelig J (eds) NMR Basic Principles and Progress, Vol. 23 (pp. 1–61). Springer Verlag, Berlin.
McInnes AG, Walter JA & Wright JLC (1983) Regiochemical distribution of deuterium during fatty acid biosynthesis following incorporation of [2-13C, 2-2H3]acetate. A 13C NMR study of exchange, desaturase and enoyl reductase stereospecifities in three algae and a yeast. Tetrahedron 39: 3512–3522.
Meesapyodsuk D, Redd DW, Cheevadhanarak S, Deshnium P & Covello PS (2001) Probing the mechanism of a cyanobacterial Δ9 fatty acid desaturase from Spirulina platensis C1 (Arthrospira sp. PCC 9438). Compar. Biochem. Physiol. Part B, 129: 831–835.
Miller RT & Hinck AP (2001) Characterization of hydride transfer to flavine adenine dinucleotide in neuronal nitric oxide synthase reductions domain: Geometric relationship between the nicotinamide and isoalloxazine rings. Arch. Biochem. Biophys. 395: 129–135.
Northfelt DW, DeNiro MJ & Epstein S (1981) Hydrogen and carbon isotopic ratios of the cellulose nitrate and saponifiable lipid fractions prepared from annual growth rings of California redwood. Geochim. Cosmochim. Acta 45: 1895–1898.
Parikh S, Moynihan DP, Xiao GP & Tonge PJ (1999) Roles of tyrosine 158 and lysine 165 in the catalytic mechanism of InhA, the enoyl-ACP reductase from Mycobacterium tubercolosis. Biochem. 38: 13623–13634.
Pionnier S & Zhang B-L (2002) Application of 2H NMR to the study of natural site-specific hydrogen isotope transfer among substrate, medium, and glycerol in glucose fermentation with yeast. Anal. Biochem. 307: 138–146.
Previs SF, Des Rosiers C, Beylot M, David F & Brunengraber H (1996) Assay of the 13C and 2H mass isotopomer distribution of phosphoenolpyruvate by gas chromatography/mass spectrometry. J. Mass Spectrom. 31: 643–648.
Pyun HJ, Coates RM, Wagschal KC, McGeady P & Croteau RB (1993) Regio-specificity and isotope effects associated with the methyl methylene eliminations in the enzyme-catalysed biosynthesis of (R)-limonene and (S)-limonene. J. Org. Chem. 58: 3998–4009.
Quemerais B, Mabon F, Naulet N & Martin GJ (1995) Site-specific isotope fractionation of hydrogen in the biosynthesis of plant fatty-acids. Plant Cell Environm. 18: 989–998.
Remaud G, Debon AA, Martin Y-L, Martin GG & Martin GJ (1997a) Authentication of bitter almond oil and cinnamon oil: Application of the SNIF-NMR method to benzaldehyde. J. Agric. Food Chem. 45: 4042–4048.
Remaud GS, Martin Y-L, Martin GG & Martin GJ (1997b) Detection of sophisticated adulterations of natural vanilla flavours and extracts: Application of the SNIF-NMR method to vanillin and p-hydroybenzaldehyde. J. Agric. Food Chem. 45: 859–866.
Richter G (1988) Stoffwechselphysiologie der Pflanzen, 5. Aufl. Georg Thieme Verlag, Stuttgart, p. 405.
Rieder C, Jaun B & Arigoni D (2000) On the early steps of cineol biosynthesis in Eucalyptus globulus. Helv. Chim. Acta 83: 2504–2513.
Rohdich F, Kis K, Bacher A, Eisenreich W (2001) The nonmevalonate pathway of isoprenoids: Genes, enzymes and intermediates. Curr. Opin. Chem. Biol. 5: 535–540.
Rohdich F, Zepeck F, Adam P, Hecht S, Kaiser J, Laupitz R, Gräwert T, Amslinger S, Eisenreich W, Bacher A & Arigoni D (2003) The deoxyxylulose phosphate pathway of isoprenoid biosynthesis: Studies on the mechanism of the reactions catalysed by IspG and IspH protein. Proc. Natl. Acad. Sci. USA 100: 1586–1591.
Rohmer M (1998) Isoprenoid biosynthesis via the mevalonateindependent route, a novel target for antibacterial drugs? Prog. Drug Res. 50: 135–154.
Rohmer M (1999) A mevalonate-independent route to isopentenyl diphosphate. In: Cane D (ed) Comprehensive Natural Product Chemistry, Vol. 2 (pp. 45–67). Pergamon Press, Oxford, UK.
Roßmann A, Butzenlechner M & Schmidt H-L (1991) Evidence for a nonstatistical carbon isotope distribution in natural glucose. Plant Physiol. 96: 609–614.
Roßmann A, Schmidt H-L, Hermann A & Ristow R (1998) Multielement stable isotope ratio analysis of glycerol to determine its origin in wine. Z. Lebensm. Unters. Forsch.A 207: 237–243.
Royer A, Naulet N, Mabon F, Lees M & Martin GJ (1999) Stable isotope characterization of olive oils. II – Deuterium distribution in fatty acids studied by nuclear magnetic resonance. JAOCS 76: 365–373.
Saito K, Kawaguchi A, Nozoe S, Seyama Y & Okuda S (1982) Differential hydrogen exchange during the fatty acid synthetase reaction: deuterium distribution of fatty acids synthesized from [2-2H2]malonyl-CoA. Biochem. Biophys. Res. Commun. 108: 95–1001.
Savile CK, Reed DW, Meesapyodsuk D, Covello PS & Buist PH (2001) Cryptoregio-chemistry of a Brassica napus fatty acid desaturase (FAD3): A kinetic isotope effect study. J. Chem. Soc. – Perkin Transact. 1 (9): 1116–1121.
Schleucher J (1998) Intramolecular deuterium distribution and plant growth conditions. In: H Griffith (ed) Stable Isotopes, integration of biological, ecological and geochemical processes. BIOS Scientific Publishers Ltd., Oxford, pp. 63–73.
Schleucher J, Vanderveer P, Markley JL & Sharkey TD (1999) Intramolecular deuterium distributions reveal disequilibrium of chloroplast phosphoglucose isomerase. Plant Cell Environm. 22: 525–533.
Schmidt H-L, Kexel H, Butzenlechner M, Schwarz S, Gleixner G, Thimet S, Werner RA & Gensler M (1995) Non-statistical isotope distribution in natural compounds: Mirror of their biosynthesis and key for their origin assignment. In: Wada E, Yoneyama T, Minagawa M, Ando T & Fry BD (eds) Stable Isotopes in the Biosphere (pp. 17–35). Kyoto University Press, Japan.
Schmidt H-L & Gleixner G (1998) Carbon isotope effects on key reactions in plant metabolism and 13C-patterns in natural compounds. In: H Griffith (ed) Stable Isotopes, integration of biological, ecological and geochemical processes. BIOS Scientific Publishers Ltd., Oxford, pp. 13–25.
Schmidt H-L, Roßmann A & Werner RA (1998) Stable isotope ratio analysis in quality control of flavourings. In: Ziegler E & Ziegler H (eds) Flavourings, Production, Composition, Applications, Regulations (pp. 539–594). Wiley-VCH, Weinheim.
Schmidt H-L, Weber D, Roßmann A & Werner RA (1999) The potential of intermolecular and intramolecular isotope correlations for authenticity control. In: Teranishi R, Wick EL & Hornstein I (eds) Flavor Chemistry, Thirty Years of Progress (pp. 55–61). Kluwer Academic/Plenum Publishers, New York.
Schmidt H-L (2001) Fundamentals, prerequisites and realisations of in vivo non-statistical isotope distributions in natural compounds. Proc. 1st Intern. Symposium on Isotopomers (ISI), Yokohama, Japan 2001.
Schmidt H-L, Werner RA & Roßmann A (2001) 18O Pattern and biosynthesis of natural plant products. Phytochem. 58: 9–32.
Schmidt H-L, Eisenreich W (2001) Systematic and regularities in the origin of 2H patterns in natural compounds. Isot. Environm. Health Stud. 37: 253–254.
Sessions AL, Burgoyne TW, Schimmelmann A & Hayes JM (1999) Fractionation of hydrogen isotopes in lipid biosynthesis. Org. Geochem. 30: 1193–1200.
Seyama Y, Kawaguchi A, Kasama T, Sasaki K, Arai K, Okuda S & Yamakawa T (1978) Identification of sources of hydrogen atoms in fatty acids synthesized using deuterated water and stereospecifically deuterium labelled NADPH by gas chromatographic mass spectrometric analysis. Biomed. Mass Spectrom. 5: 357–361.
Shen AL, Sem DS & Kasper CB (1999) Mechanistic studies on the reductive half-reaction of NADPH-cytochrome P450 oxidoreductase. J. Biol. Chem. 274: 5391–5398.
Simon H & Kraus A (1976) Hydrogen isotope transfers in biological processes. In Buncel E & Lee CC (eds) Isotopes in Organic Chemistry, Vol. II (pp. 153–229). Elsevier Science Publishers B.V., Amsterdam.
Smith BN & Jacobson BS (1976) 2H/1H and 13C/12C ratios for classes of compounds isolated from potato tuber. Plant Cell Physiol. 17: 1089–1092.
Smith BN, Ziegler H & Lipp J. (1991) Isotopic evidence for mesophyll reduction in Zea mays, an NADP-malic enzyme plant. Naturwiss. 78: 358–359.
Steliopoulos P, Wüst M, Adam K-P & Mosandl A (2002) Biosynthesis of the sesquiterpene germacrene D in Solidago canadensis: 13C and 2H labeling studies. Phytochem. 60: 13–20.
Sternberg LdaSL (1988). D/H ratios of environmental water recorded by D/H ratios of plant lipids. Nature 333: 59–61.
Sternberg L, DeNiro MJ (1983) Isotopic composition of cellulose from C3, C4, and CAM plants growing near one another. Science 220: 947–949.
Sternberg LOR, DeNiro MJ & Ting IP (1984) Carbon, hydrogen, and oxygen isotope ratios of cellulose from plants having intermediary photosynthetic modes. Plant Physiol. 74: 104–107.
Wagschal KC, Pyun H-J, Coates RM & Croteau R (1994) Monoterpene biosynthesis: isotope effects with bicyclic olefin formation catalysed by pinene synthases from sage (Salvia officinalis). Arch. Biochem. Biophys. 308: 477–487.
Weber D, Kexel H & Schmidt H-L (1997) 13C-pattern of natural glycerol: Origin and practical importance. J. Agric. Food Chem. 45: 2042–2046.
Weilacher T, Gleixner G & Schmidt H-L (1996) Carbon isotope pattern in purine alkaloids. A key to isotope discriminations in C1 compounds. Phytochem. 41: 1073–1077.
Werner RA & Brand WA (2001) Referencing strategies and techniques in stable isotope ratio analysis. Rapid Comm. Mass Spectrom. 15: 501–519.
Werner RA & Schmidt H-L (2002) The in-vivo nitrogen isotope discrimination among organic plant compounds. Phytochem. 61: 465–484.
White JWC (1989) Stable hydrogen isotope ratios in plants: A review of current theory and some potential applications. In: Rundel PW, Ehleringer JR & Nagy KA (eds) Stable Isotopes in Ecological Research (pp. 142–162). Springer Verlag New York.
Yakir D, DeNiro MJ (1990) Oxygen and hydrogen isotope fractionation during cellulose metabolism in Lemna gibba L. Plant Physiol. 93: 325–332.
Zhang BL, Quemerais B, Martin ML, Martin GJ & Williams JM (1994a) Determination of the natural deuterium distribution in glucose from plants having different photosynthetic pathways. Phytochem. Anal. 5: 105–110.
Zhang BL, Vallet C, Blanchard F & Martin GJ (1994b) Characterization of galactose from carrageenans by natural abundance site-specific isotope parameters. Phytochem. Anal. 5: 291–296.
Zhang BL, Yunianta & Martin ML (1995) Site-specific isotope fractionation in the characterisation of biochemical mechanisms. J. Biol. Chem. 270: 16023–16029.
Zhang BL, Buddrus S, Trierweiler M & Martin GJ (1998) Characterisation of glycerol from different origins by 2H-and 13CNMR studies of site-specific natural isotope fractionation. J. Agric. Food Chem. 46: 1374–1380.
Zhang B-L, Buddrus S, Martin ML (2000) Site-specific hydrogen isotope fractionation in the biosynthesis of glycerol. Bioorgan. Chem. 28: 1–15.
Zhang BL, Billault I, Li X, Mabon F, Remaud G & Martin ML (2002) Hydrogen isotopic profile in the characterisation of sugars. Influence of the metabolic pathway. J. Agric. Food Chem. 50: 1574–1580.
Ziegler H, Osmond CB, Stichler W & Trimborn P (1976) Hydrogen isotope discrimination in higher plants: Correlation with photosynthetic pathway and environment. Planta (Berlin) 128: 85–92.
Zimmer E, Schmidt H-L, Eisenreich W (unpublished). Syntheses and multi-isotope pattern analysis of L-ephedrine from various origin.