Systematic virtual screening in search of SARS CoV-2 inhibitors against spike glycoprotein: pharmacophore screening, molecular docking, ADMET analysis and MD simulations

Tejas M. Dhameliya1, Prinsa R. Nagar1, Normi D. Gajjar1
1L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hu B, Guo H, Zhou P, Shi ZL (2020) Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol 19:141–154. https://doi.org/10.1038/s41579-020-00459-7

Cui J, Li F, Shi ZL (2019) Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 17:181–192. https://doi.org/10.1038/s41579-018-0118-9

Ashour HM, Elkhatib WF, Rahman MM, Elshabrawy HA (2020) Insights into the recent 2019 novel coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks. Pathogens 9:e186. https://doi.org/10.3390/pathogens9030186

Pillaiyar T, Wendt LL, Manickam M, Easwaran M (2021) The recent outbreaks of human coronaviruses: a medicinal chemistry perspective. Med Res Rev 41:72–135. https://doi.org/10.1002/med.21724

Wu JT, Leung K, Leung GM (2020) Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modeling study. Obstet Gynecol Surv 75:399–400. https://doi.org/10.1097/01.ogx.0000688032.41075.a8

Hui DS, Azhar EI, Madani TA et al (2020) The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health: the latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis 91:264–266. https://doi.org/10.1016/j.ijid.2020.01.009

World Health Organization. (2020) Coronavirus disease 2019 (COVID-19). Situation report: 51. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf?sfvrsn=1ba62e57_10. Accessed 2 Feb 2021

WHO Coronavirus Disease (COVID-19) Dashboard. https://covid19.who.int/. Accessed 18 Jan 2022

Nicola M, Alsafi Z, Sohrabi C et al (2020) The socio-economic implications of the coronavirus pandemic (COVID-19): a review. Int J Surg 78:185–193. https://doi.org/10.1016/j.ijsu.2020.04.018

Bashir MF, Ma B, Shahzad L (2020) A brief review of socio-economic and environmental impact of COVID-19. Air Qual Atmos Heal 13:1403–1409. https://doi.org/10.1007/s11869-020-00894-8

Mousavizadeh L, Ghasemi S (2020) Genotype and phenotype of COVID-19: their roles in pathogenesis. J Microbiol Immunol Infect 54:159–163. https://doi.org/10.1016/j.jmii.2020.03.022

Ahidjo BA, Loe MWC, Ng YL et al (2020) Current perspective of antiviral strategies against COVID-19. ACS Infect Dis 6:1624–1634. https://doi.org/10.1021/acsinfecdis.0c00236

Tyrrell DAJ, Myint SH (1996) Coronaviruses. In: Baron S (ed) Medical Microbiology. University of Texas Medical Branch at Galveston, Galveston

Zhu N, Zhang D, Wang W et al (2020) A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 382:727–733. https://doi.org/10.1056/nejmoa2001017

Freitas BT, Durie IA, Murray J et al (2020) Characterization and noncovalent inhibition of the deubiquitinase and deISGylase activity of SARS-CoV-2 papain-like protease. ACS Infect Dis 6:2099–2109. https://doi.org/10.1021/acsinfecdis.0c00168

Lu R, Zhao X, Li J et al (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395:565–574. https://doi.org/10.1016/S0140-6736(20)30251-8

Woo PCY, Lau SKP, Huang Y, Yuen KY (2009) Coronavirus diversity, phylogeny and interspecies jumping. Exp Biol Med 234:1117–1127. https://doi.org/10.3181/0903-MR-94

Guan W, Ni Z, Hu Y et al (2020) Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 382:1708–1720. https://doi.org/10.1056/nejmoa2002032

Rothan HA, Byrareddy SN (2020) The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun 109:102433. https://doi.org/10.1016/j.jaut.2020.102433

Singhal T (2020) A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr 87:281–286. https://doi.org/10.1007/s12098-020-03263-6

Ghosh AK, Brindisi M, Shahabi D et al (2020) Drug development and medicinal chemistry efforts toward SARS-coronavirus and COVID-19 therapeutics. ChemMedChem 15:907–932. https://doi.org/10.1002/cmdc.202000223

Mohamed K, Yazdanpanah N, Saghazadeh A, Rezaei N (2021) Computational drug discovery and repurposing for the treatment of COVID-19: a systematic review. Bioorg Chem 106:104490. https://doi.org/10.1016/j.bioorg.2020.104490

Wang X, Guan Y (2021) COVID-19 drug repurposing: A review of computational screening methods, clinical trials, and protein interaction assays. Med Res Rev 41:5–28. https://doi.org/10.1002/med.21728

Chakravarti R, Singh R, Ghosh A et al (2021) A review on potential of natural products in the management of COVID-19. RSC Adv 11:16711–16735. https://doi.org/10.1039/d1ra00644d

Shagufta AI (2021) The race to treat COVID-19: Potential therapeutic agents for the prevention and treatment of SARS-CoV-2. Eur J Med Chem 213:113157. https://doi.org/10.1016/j.ejmech.2021.113157

Tang T, Bidon M, Jaimes JA et al (2020) Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Res 178:104792. https://doi.org/10.1016/j.antiviral.2020.104792

Varghese PM, Tsolaki AG, Yasmin H et al (2020) Host-pathogen interaction in COVID-19: pathogenesis, potential therapeutics and vaccination strategies. Immunobiology 225:152008. https://doi.org/10.1016/j.imbio.2020.152008

Bojadzic D, Alcazar O, Chen J et al (2021) Small-molecule inhibitors of the coronavirus spike: ACE2 protein-protein interaction as blockers of viral attachment and entry for SARS-CoV-2. ACS Infect Dis 7:1519–1534. https://doi.org/10.1021/acsinfecdis.1c00070

Day CJ, Bailly B, Guillon P et al (2021) Multidisciplinary approaches identify compounds that bind to human ACE2 or SARS-CoV-2 spike protein as candidates to block SARS-CoV-2–ACE2 receptor interactions. MBio 12:e03681-e3720. https://doi.org/10.1128/mBio.03681-20

Freitas FC, Ferreira PHB, Favaro DC, De ORJ (2021) Shedding light on the inhibitory mechanisms of SARS-CoV-1/CoV-2 spike proteins by ACE2-designed peptides. J Chem Inf Model 61:1226–1243. https://doi.org/10.1021/acs.jcim.0c01320

Rajpoot S, Ohishi T, Kumar A et al (2021) A novel therapeutic peptide blocks SARS-CoV-2 spike protein binding with host cell ACE2 receptor. Drugs R D 21:273–283. https://doi.org/10.1007/s40268-021-00357-0

Bharatam PV (2021) Computer-aided drug design. In: Poduri R (ed) Drug discovery and development. Springer, Singapore, pp 137–210

Nagar PR, Gajjar ND, Dhameliya TM (2021) In search of SARS CoV-2 replication inhibitors: virtual screening, molecular dynamics simulations and ADMET analysis. J Mol Struct 1246:131190. https://doi.org/10.1016/j.molstruc.2021.131190

Gajjar ND, Dhameliya TM, Shah GB (2021) In search of RdRp and Mpro inhibitors against SARS CoV-2: molecular docking, molecular dynamic simulations and ADMET analysis. J Mol Struct 1239:130488. https://doi.org/10.1016/j.molstruc.2021.130488

Walls AC, Park YJ, Tortorici MA et al (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181:281-292.e6. https://doi.org/10.1016/j.cell.2020.02.058

Schrödinger Release 2020–3: SiteMap, Schrödinger, LLC, New York, NY, 2020

Vidler LR, Brown N, Knapp S, Hoelder S (2012) Druggability analysis and structural classification of bromodomain acetyl-lysine binding sites. J Med Chem 55:7346–7359. https://doi.org/10.1021/jm300346w

Schrödinger Release 2020–3: Phase, Schrödinger, LLC, New York, NY, 2020

Asinex. http://www.asinex.com/. Accessed 17 Aug 2019

Schrödinger Release 2020–3: LigPrep, Schrödinger, LLC, New York, NY, 2020

Dhameliya TM, Tiwari R, Banerjee A et al (2018) Benzo[d]thiazole-2-carbanilides as new anti-TB chemotypes: design, synthesis, biological evaluation, and structure-activity relationship. Eur J Med Chem 155:364–380. https://doi.org/10.1016/j.ejmech.2018.05.049

Jadhavar PS, Dhameliya TM, Vaja MD et al (2016) Synthesis, biological evaluation and structure-activity relationship of 2-styrylquinazolones as anti-tubercular agents. Bioorg Med Chem Lett 26:2663–2669. https://doi.org/10.1016/j.bmcl.2016.04.012

Shah P, Dhameliya TM, Bansal R et al (2014) N-Arylalkylbenzo[d]thiazole-2-carboxamides as anti-mycobacterial agents: design, new methods of synthesis and biological evaluation. Med Chem Commun 5:1489–1495. https://doi.org/10.1039/C4MD00224E

Bhakhar KA, Gajjar ND, Bodiwala KB et al (2021) Identification of anti-mycobacterial agents against mmpL3: virtual screening, ADMET analysis and MD simulations. J Mol Struct 1244:130941. https://doi.org/10.1016/j.molstruc.2021.130941

Alexpandi R, De Mesquita JF, Pandian SK, Ravi AV (2020) Quinolines-based SARS-CoV-2 3CLpro and RdRp inhibitors and Spike-RBD-ACE2 inhibitor for drug-repurposing against COVID-19: an in silico analysis. Front Microbiol. https://doi.org/10.3389/fmicb.2020.01796

Ferraz WR, Gomes RA, Novaes ALS, Goulart Trossini GH (2020) Ligand and structure-based virtual screening applied to the SARS-CoV-2 main protease: an in silico repurposing study. Future Med Chem 12:1815–1828. https://doi.org/10.4155/fmc-2020-0165

Shahinshavali S, Hossain KA, Kumar AVDN et al (2020) Ultrasound assisted synthesis of 3-alkynyl substituted 2-chloroquinoxaline derivatives: their in silico assessment as potential ligands for N-protein of SARS-CoV-2. Tetrahedron Lett 61:152336. https://doi.org/10.1016/j.tetlet.2020.152336

Olubiy OO, Olagunju M, Keutmann M et al (2020) High throughput virtual screening to discover inhibitors of the main protease of the coronavirus SARS-CoV-2. Molecules 25:3193. https://doi.org/10.3390/molecules25143193

Ngo ST, Quynh Anh Pham N, Le Thi L et al (2020) Computational determination of potential inhibitors of SARS-CoV-2 main protease. J Chem Inf Model 60:5771–5780. https://doi.org/10.1021/acs.jcim.0c00491

Hagar M, Ahmed HA, Aljohani G, Alhaddad OA (2020) Investigation of some antiviral N-heterocycles as COVID 19 drug: molecular docking and DFT calculations. Int J Mol Sci 21:3922. https://doi.org/10.3390/ijms21113922

Gentile D, Patamia V, Scala A et al (2020) Putative inhibitors of SARS-COV-2 main protease from a library of marine natural products: a virtual screening and molecular modeling study. Mar Drugs 18:225. https://doi.org/10.3390/md18040225

Chemboli R, Kapavarapu R, Deepti K et al (2021) Pyrrolo[2,3-b]quinoxalines in attenuating cytokine storm in COVID-19: their sonochemical synthesis and in silico/in vitro assessment. J Mol Struct 1230:129868. https://doi.org/10.1016/j.molstruc.2020.129868

Schrödinger Release 2020-3: Glide, Schrödinger, LLC, New York, NY, 2020

DeLano WL (2002). The PyMOL molecular genetics graphics system, DeLano Scientific LLC, San Carlos

Dhameliya TM, Chudasma SJ, Patel TM, Dave BP (2022) A review on synthetic account of 1,2,4-oxadiazoles as anti-infective agents. Mol Divers. https://doi.org/10.1007/s11030-021-10375-4

Bhakhar KA, Sureja DK, Dhameliya TM (2022) Synthetic account of indoles in search of potential anti-mycobacterial agents: a review and future insights. J Mol Struct 1248:131522. https://doi.org/10.1016/j.molstruc.2021.131522

Schrödinger Release 2020-3: QikProp, Schrödinger, LLC, New York, NY, 2020

Modi P, Patel S, Chhabria M (2019) Structure-based design, synthesis and biological evaluation of a newer series of pyrazolo[1,5-a]pyrimidine analogues as potential anti-tubercular agents. Bioorg Chem 87:240–251. https://doi.org/10.1016/j.bioorg.2019.02.044

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and devlopment settings. Adv Drug Deliv Rev 46:3–26. https://doi.org/10.1016/s0169-409x(00)00129-0

Daina A, Zoete V (2016) A BOILED-Egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 11:1117–1121. https://doi.org/10.1002/cmdc.201600182

Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Reports 7:42717. https://doi.org/10.1038/srep42717

Levine WG (1991) Metabolism of aZO dyes: implication for detoxication and activation. Drug Metab Rev 23:253–309. https://doi.org/10.3109/03602539109029761

Purohit V, Basu AK (2000) Mutagenicity of nitroaromatic compounds. Chem Res Toxicol 13:673–692. https://doi.org/10.1021/tx000002x

Sewald N, Jakubke H-D (2009) Peptides: chemistry and biology, 2nd edn. Wiley-VCH, New York

Naqvi AAT, Mohammad T, Hasan GM, Hassan MI (2019) Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships. Curr Top Med Chem 18:1755–1768. https://doi.org/10.2174/1568026618666181025114157

Salo-Ahen OMH, Alanko I, Bhadane R et al (2021) Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes 9:71. https://doi.org/10.3390/pr9010071

Bera I, Payghan PV (2019) Use of molecular dynamics simulations in structure-based drug discovery. Curr Pharm Des 25:3339–3349. https://doi.org/10.1021/acs.jpcb.1c04556

Padhi AK, Rath SL, Tripathi T (2021) Accelerating COVID-19 research using molecular dynamics simulation. J Phys Chem B 125:9078–9091. https://doi.org/10.1021/acs.jpcb.1c04556

Abraham MJ, Berk Hess, Lindahl E, Spoel D van der (2020) GROMACS 2020.1 (Manual Version 2020.1) Zenodo. https://doi.org/10.5281/zenodo.4054996. Accessed 10 Sep 2020

Abraham MJ, Murtola T, Schulz R et al (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25

Protein Data Bank. https://www.rcsb.org/. Accessed 30 Aug 2020

Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, (2020) Impact, Schrödinger, LLC, New York, NY, 2020; Prime, Schrödinger, LLC, New York, NY, 2020

Huang J, Rauscher S, Nawrocki G et al (2016) CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14:71–73. https://doi.org/10.1038/nmeth.4067

Vanommeslaeghe K, Hatcher E, Acharya C et al (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31:671–690. https://doi.org/10.1002/jcc.21367

Yu W, He X, Vanommeslaeghe K, MacKerell AD (2012) Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. J Comput Chem 33:2451–2468. https://doi.org/10.1002/jcc.23067