Systematic virtual screening in search of SARS CoV-2 inhibitors against spike glycoprotein: pharmacophore screening, molecular docking, ADMET analysis and MD simulations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Hu B, Guo H, Zhou P, Shi ZL (2020) Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol 19:141–154. https://doi.org/10.1038/s41579-020-00459-7
Cui J, Li F, Shi ZL (2019) Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 17:181–192. https://doi.org/10.1038/s41579-018-0118-9
Ashour HM, Elkhatib WF, Rahman MM, Elshabrawy HA (2020) Insights into the recent 2019 novel coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks. Pathogens 9:e186. https://doi.org/10.3390/pathogens9030186
Pillaiyar T, Wendt LL, Manickam M, Easwaran M (2021) The recent outbreaks of human coronaviruses: a medicinal chemistry perspective. Med Res Rev 41:72–135. https://doi.org/10.1002/med.21724
Wu JT, Leung K, Leung GM (2020) Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modeling study. Obstet Gynecol Surv 75:399–400. https://doi.org/10.1097/01.ogx.0000688032.41075.a8
Hui DS, Azhar EI, Madani TA et al (2020) The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health: the latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis 91:264–266. https://doi.org/10.1016/j.ijid.2020.01.009
World Health Organization. (2020) Coronavirus disease 2019 (COVID-19). Situation report: 51. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf?sfvrsn=1ba62e57_10. Accessed 2 Feb 2021
WHO Coronavirus Disease (COVID-19) Dashboard. https://covid19.who.int/. Accessed 18 Jan 2022
Nicola M, Alsafi Z, Sohrabi C et al (2020) The socio-economic implications of the coronavirus pandemic (COVID-19): a review. Int J Surg 78:185–193. https://doi.org/10.1016/j.ijsu.2020.04.018
Bashir MF, Ma B, Shahzad L (2020) A brief review of socio-economic and environmental impact of COVID-19. Air Qual Atmos Heal 13:1403–1409. https://doi.org/10.1007/s11869-020-00894-8
Mousavizadeh L, Ghasemi S (2020) Genotype and phenotype of COVID-19: their roles in pathogenesis. J Microbiol Immunol Infect 54:159–163. https://doi.org/10.1016/j.jmii.2020.03.022
Ahidjo BA, Loe MWC, Ng YL et al (2020) Current perspective of antiviral strategies against COVID-19. ACS Infect Dis 6:1624–1634. https://doi.org/10.1021/acsinfecdis.0c00236
Tyrrell DAJ, Myint SH (1996) Coronaviruses. In: Baron S (ed) Medical Microbiology. University of Texas Medical Branch at Galveston, Galveston
Zhu N, Zhang D, Wang W et al (2020) A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 382:727–733. https://doi.org/10.1056/nejmoa2001017
Freitas BT, Durie IA, Murray J et al (2020) Characterization and noncovalent inhibition of the deubiquitinase and deISGylase activity of SARS-CoV-2 papain-like protease. ACS Infect Dis 6:2099–2109. https://doi.org/10.1021/acsinfecdis.0c00168
Lu R, Zhao X, Li J et al (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395:565–574. https://doi.org/10.1016/S0140-6736(20)30251-8
Woo PCY, Lau SKP, Huang Y, Yuen KY (2009) Coronavirus diversity, phylogeny and interspecies jumping. Exp Biol Med 234:1117–1127. https://doi.org/10.3181/0903-MR-94
Guan W, Ni Z, Hu Y et al (2020) Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 382:1708–1720. https://doi.org/10.1056/nejmoa2002032
Rothan HA, Byrareddy SN (2020) The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun 109:102433. https://doi.org/10.1016/j.jaut.2020.102433
Singhal T (2020) A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr 87:281–286. https://doi.org/10.1007/s12098-020-03263-6
Ghosh AK, Brindisi M, Shahabi D et al (2020) Drug development and medicinal chemistry efforts toward SARS-coronavirus and COVID-19 therapeutics. ChemMedChem 15:907–932. https://doi.org/10.1002/cmdc.202000223
Mohamed K, Yazdanpanah N, Saghazadeh A, Rezaei N (2021) Computational drug discovery and repurposing for the treatment of COVID-19: a systematic review. Bioorg Chem 106:104490. https://doi.org/10.1016/j.bioorg.2020.104490
Wang X, Guan Y (2021) COVID-19 drug repurposing: A review of computational screening methods, clinical trials, and protein interaction assays. Med Res Rev 41:5–28. https://doi.org/10.1002/med.21728
Chakravarti R, Singh R, Ghosh A et al (2021) A review on potential of natural products in the management of COVID-19. RSC Adv 11:16711–16735. https://doi.org/10.1039/d1ra00644d
Shagufta AI (2021) The race to treat COVID-19: Potential therapeutic agents for the prevention and treatment of SARS-CoV-2. Eur J Med Chem 213:113157. https://doi.org/10.1016/j.ejmech.2021.113157
Tang T, Bidon M, Jaimes JA et al (2020) Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Res 178:104792. https://doi.org/10.1016/j.antiviral.2020.104792
Varghese PM, Tsolaki AG, Yasmin H et al (2020) Host-pathogen interaction in COVID-19: pathogenesis, potential therapeutics and vaccination strategies. Immunobiology 225:152008. https://doi.org/10.1016/j.imbio.2020.152008
Bojadzic D, Alcazar O, Chen J et al (2021) Small-molecule inhibitors of the coronavirus spike: ACE2 protein-protein interaction as blockers of viral attachment and entry for SARS-CoV-2. ACS Infect Dis 7:1519–1534. https://doi.org/10.1021/acsinfecdis.1c00070
Day CJ, Bailly B, Guillon P et al (2021) Multidisciplinary approaches identify compounds that bind to human ACE2 or SARS-CoV-2 spike protein as candidates to block SARS-CoV-2–ACE2 receptor interactions. MBio 12:e03681-e3720. https://doi.org/10.1128/mBio.03681-20
Freitas FC, Ferreira PHB, Favaro DC, De ORJ (2021) Shedding light on the inhibitory mechanisms of SARS-CoV-1/CoV-2 spike proteins by ACE2-designed peptides. J Chem Inf Model 61:1226–1243. https://doi.org/10.1021/acs.jcim.0c01320
Rajpoot S, Ohishi T, Kumar A et al (2021) A novel therapeutic peptide blocks SARS-CoV-2 spike protein binding with host cell ACE2 receptor. Drugs R D 21:273–283. https://doi.org/10.1007/s40268-021-00357-0
Bharatam PV (2021) Computer-aided drug design. In: Poduri R (ed) Drug discovery and development. Springer, Singapore, pp 137–210
Nagar PR, Gajjar ND, Dhameliya TM (2021) In search of SARS CoV-2 replication inhibitors: virtual screening, molecular dynamics simulations and ADMET analysis. J Mol Struct 1246:131190. https://doi.org/10.1016/j.molstruc.2021.131190
Gajjar ND, Dhameliya TM, Shah GB (2021) In search of RdRp and Mpro inhibitors against SARS CoV-2: molecular docking, molecular dynamic simulations and ADMET analysis. J Mol Struct 1239:130488. https://doi.org/10.1016/j.molstruc.2021.130488
Walls AC, Park YJ, Tortorici MA et al (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181:281-292.e6. https://doi.org/10.1016/j.cell.2020.02.058
Schrödinger Release 2020–3: SiteMap, Schrödinger, LLC, New York, NY, 2020
Vidler LR, Brown N, Knapp S, Hoelder S (2012) Druggability analysis and structural classification of bromodomain acetyl-lysine binding sites. J Med Chem 55:7346–7359. https://doi.org/10.1021/jm300346w
Schrödinger Release 2020–3: Phase, Schrödinger, LLC, New York, NY, 2020
Asinex. http://www.asinex.com/. Accessed 17 Aug 2019
Schrödinger Release 2020–3: LigPrep, Schrödinger, LLC, New York, NY, 2020
Dhameliya TM, Tiwari R, Banerjee A et al (2018) Benzo[d]thiazole-2-carbanilides as new anti-TB chemotypes: design, synthesis, biological evaluation, and structure-activity relationship. Eur J Med Chem 155:364–380. https://doi.org/10.1016/j.ejmech.2018.05.049
Jadhavar PS, Dhameliya TM, Vaja MD et al (2016) Synthesis, biological evaluation and structure-activity relationship of 2-styrylquinazolones as anti-tubercular agents. Bioorg Med Chem Lett 26:2663–2669. https://doi.org/10.1016/j.bmcl.2016.04.012
Shah P, Dhameliya TM, Bansal R et al (2014) N-Arylalkylbenzo[d]thiazole-2-carboxamides as anti-mycobacterial agents: design, new methods of synthesis and biological evaluation. Med Chem Commun 5:1489–1495. https://doi.org/10.1039/C4MD00224E
Bhakhar KA, Gajjar ND, Bodiwala KB et al (2021) Identification of anti-mycobacterial agents against mmpL3: virtual screening, ADMET analysis and MD simulations. J Mol Struct 1244:130941. https://doi.org/10.1016/j.molstruc.2021.130941
Alexpandi R, De Mesquita JF, Pandian SK, Ravi AV (2020) Quinolines-based SARS-CoV-2 3CLpro and RdRp inhibitors and Spike-RBD-ACE2 inhibitor for drug-repurposing against COVID-19: an in silico analysis. Front Microbiol. https://doi.org/10.3389/fmicb.2020.01796
Ferraz WR, Gomes RA, Novaes ALS, Goulart Trossini GH (2020) Ligand and structure-based virtual screening applied to the SARS-CoV-2 main protease: an in silico repurposing study. Future Med Chem 12:1815–1828. https://doi.org/10.4155/fmc-2020-0165
Shahinshavali S, Hossain KA, Kumar AVDN et al (2020) Ultrasound assisted synthesis of 3-alkynyl substituted 2-chloroquinoxaline derivatives: their in silico assessment as potential ligands for N-protein of SARS-CoV-2. Tetrahedron Lett 61:152336. https://doi.org/10.1016/j.tetlet.2020.152336
Olubiy OO, Olagunju M, Keutmann M et al (2020) High throughput virtual screening to discover inhibitors of the main protease of the coronavirus SARS-CoV-2. Molecules 25:3193. https://doi.org/10.3390/molecules25143193
Ngo ST, Quynh Anh Pham N, Le Thi L et al (2020) Computational determination of potential inhibitors of SARS-CoV-2 main protease. J Chem Inf Model 60:5771–5780. https://doi.org/10.1021/acs.jcim.0c00491
Hagar M, Ahmed HA, Aljohani G, Alhaddad OA (2020) Investigation of some antiviral N-heterocycles as COVID 19 drug: molecular docking and DFT calculations. Int J Mol Sci 21:3922. https://doi.org/10.3390/ijms21113922
Gentile D, Patamia V, Scala A et al (2020) Putative inhibitors of SARS-COV-2 main protease from a library of marine natural products: a virtual screening and molecular modeling study. Mar Drugs 18:225. https://doi.org/10.3390/md18040225
Chemboli R, Kapavarapu R, Deepti K et al (2021) Pyrrolo[2,3-b]quinoxalines in attenuating cytokine storm in COVID-19: their sonochemical synthesis and in silico/in vitro assessment. J Mol Struct 1230:129868. https://doi.org/10.1016/j.molstruc.2020.129868
Schrödinger Release 2020-3: Glide, Schrödinger, LLC, New York, NY, 2020
DeLano WL (2002). The PyMOL molecular genetics graphics system, DeLano Scientific LLC, San Carlos
Dhameliya TM, Chudasma SJ, Patel TM, Dave BP (2022) A review on synthetic account of 1,2,4-oxadiazoles as anti-infective agents. Mol Divers. https://doi.org/10.1007/s11030-021-10375-4
Bhakhar KA, Sureja DK, Dhameliya TM (2022) Synthetic account of indoles in search of potential anti-mycobacterial agents: a review and future insights. J Mol Struct 1248:131522. https://doi.org/10.1016/j.molstruc.2021.131522
Schrödinger Release 2020-3: QikProp, Schrödinger, LLC, New York, NY, 2020
Modi P, Patel S, Chhabria M (2019) Structure-based design, synthesis and biological evaluation of a newer series of pyrazolo[1,5-a]pyrimidine analogues as potential anti-tubercular agents. Bioorg Chem 87:240–251. https://doi.org/10.1016/j.bioorg.2019.02.044
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and devlopment settings. Adv Drug Deliv Rev 46:3–26. https://doi.org/10.1016/s0169-409x(00)00129-0
Daina A, Zoete V (2016) A BOILED-Egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 11:1117–1121. https://doi.org/10.1002/cmdc.201600182
Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Reports 7:42717. https://doi.org/10.1038/srep42717
Levine WG (1991) Metabolism of aZO dyes: implication for detoxication and activation. Drug Metab Rev 23:253–309. https://doi.org/10.3109/03602539109029761
Purohit V, Basu AK (2000) Mutagenicity of nitroaromatic compounds. Chem Res Toxicol 13:673–692. https://doi.org/10.1021/tx000002x
Naqvi AAT, Mohammad T, Hasan GM, Hassan MI (2019) Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships. Curr Top Med Chem 18:1755–1768. https://doi.org/10.2174/1568026618666181025114157
Salo-Ahen OMH, Alanko I, Bhadane R et al (2021) Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes 9:71. https://doi.org/10.3390/pr9010071
Bera I, Payghan PV (2019) Use of molecular dynamics simulations in structure-based drug discovery. Curr Pharm Des 25:3339–3349. https://doi.org/10.1021/acs.jpcb.1c04556
Padhi AK, Rath SL, Tripathi T (2021) Accelerating COVID-19 research using molecular dynamics simulation. J Phys Chem B 125:9078–9091. https://doi.org/10.1021/acs.jpcb.1c04556
Abraham MJ, Berk Hess, Lindahl E, Spoel D van der (2020) GROMACS 2020.1 (Manual Version 2020.1) Zenodo. https://doi.org/10.5281/zenodo.4054996. Accessed 10 Sep 2020
Abraham MJ, Murtola T, Schulz R et al (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25
Protein Data Bank. https://www.rcsb.org/. Accessed 30 Aug 2020
Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, (2020) Impact, Schrödinger, LLC, New York, NY, 2020; Prime, Schrödinger, LLC, New York, NY, 2020
Huang J, Rauscher S, Nawrocki G et al (2016) CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14:71–73. https://doi.org/10.1038/nmeth.4067
Vanommeslaeghe K, Hatcher E, Acharya C et al (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31:671–690. https://doi.org/10.1002/jcc.21367