Systematic Review and Meta-analysis of Radial or Femoral Access for Carotid Stenting

Pang-Shuo Perng1, Yu Chang1, Hao-Kuang Wang2,3, Yen-Ta Huang4, Chia-En Wong1, Kuan-Yu Chi5, Jung-Shun Lee1,6,7, Liang-Chao Wang1, Chih-Yuan Huang1
1Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
2School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
3Department of Neurosurgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
4Department of Surgery National Cheng Kung University, Hospital, College of Medicine, National Cheng Kung University Tainan Taiwan
5Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
6Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
7Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan

Tóm tắt

There is a growing interest in performing coronary artery and neurovascular interventions via the radial artery; however, few studies have examined the outcomes of transradial carotid stenting. Therefore, our study aimed to compare cerebrovascular outcomes and crossover rates in carotid stenting between transradial and traditional transfemoral approaches. A systematic review was performed by searching three electronic databases from inception to June 2022 in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. In addition, random effect meta-analysis was used to pool the odds ratios (ORs) for stroke, transient ischemic attack, major adverse cardiac events, death, major vascular access site complications, and procedure crossover rates between the transradial and transfemoral approaches. A total of 6 studies were included involving a total of n = 567 transradial and n = 6176 transfemoral procedures. The ORs for stroke, transient ischemic attack, and major adverse cardiac events were 1.43 (95% confidence interval, CI 0.72–2.86, I2 = 0), 0.51 (95% CI 0.17–1.54, I2 = 0), and 1.08 (95% CI 0.62–1.86, I2 = 0), respectively. Neither the major vascular access site complication rate (OR 1.11, 95% CI 0.32–3.87, I2 = 0) nor crossover rate (OR 3.94, 95% CI 0.62–25.11, I2 = 57%) showed statistically significant differences between the two approaches. The modest quality of the data suggested comparable procedural outcomes between the transradial and transfemoral approaches when performing carotid stenting; however, high level evidence regarding postoperative brain images and risk of stroke in transradial carotid stenting are lacking. Therefore, it is reasonable for interventionists to weigh up the risks of neurological events and potential benefits, including fewer access site complications, before choosing the radial or femoral arteries as access sites. Future large-scale randomized controlled trials are imperative.

Tài liệu tham khảo

Bertrand OF, Rao SV, Pancholy S, Jolly SS, Rodés-Cabau J, Larose E, et al. Transradial approach for coronary angiography and interventions: results of the first international transradial practice survey. JACC Cardiovasc Interv. 2010;3(10):1022–31. Mason PJ, Shah B, Tamis-Holland JE, Bittl JA, Cohen MG, Safirstein J, et al. An update on radial artery access and best practices for transradial coronary angiography and intervention in acute coronary syndrome: a scientific statement from the American heart association. Circ Cardiovasc Interv. 2018;11(9):e35. Jolly SS, Yusuf S, Cairns J, Niemelä K, Xavier D, Widimsky P, et al. Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): a randomised, parallel group, multicentre trial. Lancet. 2011;377(9775):1409–20. Romagnoli E, Biondi-Zoccai G, Sciahbasi A, Politi L, Rigattieri S, Pendenza G, et al. Radial versus femoral randomized investigation in ST-segment elevation acute coronary syndrome: the RIFLE-STEACS (radial versus femoral randomized investigation in ST-elevation acute coronary syndrome) study. J Am Coll Cardiol. 2012;60(24):2481–9. Valgimigli M, Gagnor A, Calabró P, Frigoli E, Leonardi S, Zaro T, et al. Radial versus femoral access in patients with acute coronary syndromes undergoing invasive management: a randomised multicentre trial. Lancet. 2015;385(9986):2465–76. Mehta SR, Jolly SS, Cairns J, Niemela K, Rao SV, Cheema AN, et al. Effects of radial versus femoral artery access in patients with acute coronary syndromes with or without ST-segment elevation. J Am Coll Cardiol. 2012;60(24):2490–9. Bernat I, Horak D, Stasek J, Mates M, Pesek J, Ostadal P, et al. ST-segment elevation myocardial infarction treated by radial or femoral approach in a multicenter randomized clinical trial: the STEMI-RADIAL trial. J Am Coll Cardiol. 2014;63(10):964–72. Jhand A, Atti V, Gwon Y, Dhawan R, Turagam MK, Mamas MA, et al. Meta-analysis of transradial vs transfemoral access for percutaneous coronary intervention in patients with ST elevation myocardial infarction. Am J Cardiol. 2021;141:23–30. Kolkailah AA, Alreshq RS, Muhammed AM, Zahran ME, Anas El-Wegoud M, Nabhan AF. Transradial versus transfemoral approach for diagnostic coronary angiography and percutaneous coronary intervention in people with coronary artery disease. Cochrane Database Syst Rev. 2018;4(4):Cd12318. Yip HK, Sung PH, Wu CJ, Yu CM. Carotid stenting and endarterectomy. Int J Cardiol. 2016;214:166–74. Solomon Y, Varkevisser RRB, Swerdlow NJ, Li C, Liang P, Siracuse JJ, et al. Outcomes after transfemoral carotid artery stenting stratified by preprocedural symptom status. J Vasc Surg. 2021;73(6):2021–9. Shen S, Jiang X, Dong H, Peng M, Wang Z, Che W, et al. Effect of aortic arch type on technical indicators in patients undergoing carotid artery stenting. J Int Med Res. 2019;47(2):682–8. Montorsi P, Cortese B, Cernetti C, Lanzellotti D, Di Palma G, Marchese A, et al. Transradial approach for carotid artery stenting: a position paper from the Italian society of interventional cardiology (SICI-GISE). Catheter Cardiovasc Interv. 2021;97(7):1440–51. Joshi KC, Beer-Furlan A, Crowley RW, Chen M, Munich SA. Transradial approach for neurointerventions: a systematic review of the literature. J Neurointerv Surg. 2020;12(9):886–92. Jaroenngarmsamer T, Bhatia KD, Kortman H, Orru E, Krings T. Procedural success with radial access for carotid artery stenting: systematic review and meta-analysis. J Neurointerv Surg. 2020;12(1):87–93. Xu C, Furuya-Kanamori L, Zorzela L, Lin L, Vohra S. A proposed framework to guide evidence synthesis practice for meta-analysis with zero-events studies. J Clin Epidemiol. 2021;135:70–8. Julian PTH, Simon GT, Jonathan JD, Douglas GA. Measuring inconsistency in meta-analyses. BMJ. 2023; 327(7414): 557–560. https://doi.org/10.1136/bmj.327.7414.557. R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ Owen RK, Bradbury N, Xin Y, Cooper N, Sutton A. Metainsight: an interactive web-based tool for analyzing, interrogating, and visualizing network meta-analyses using R‑shiny and netmeta. Res Synth Methods. 2019;10(4):569–81. Ruzsa Z, Nemes B, Pintér L, Berta B, Tóth K, Teleki B, et al. A randomised comparison of transradial and transfemoral approach for carotid artery stenting: RADCAR (RADial access for CARotid artery stenting) study. EuroIntervention. 2014;10(3):381–91. Mendiz OA, Fava C, Lev G, Caponi G, Valdivieso L. Transradial versus transfemoral carotid artery stenting: a 16-year single-center experience. J Interv Cardiol. 2016;29(6):588–93. Gao BL, Xu GQ, Wang ZL, Li TX, Wang YF, Liang XD, et al. Transradial stenting for carotid stenosis in patients with bovine type and type III aortic arch: experience in 28 patients. World Neurosurg. 2018;111:e661–e7. Shchanitsyn IN, Sharafutdinov MR, Iakubov RA, Larin IV. Transradial approach in carotid stenting. Angiol Sosud Khir. 2018;24(2):114–22. Erben Y, Meschia JF, Heck DV, Shawl FA, Mayorga-Carlin M, Howard G, et al. Safety of the transradial approach to carotid stenting. Catheter Cardiovasc Interv. 2022;99(3):814–21. https://doi.org/10.1002/ccd.29912. Heck D, Jost A, Howard G. Stenting the carotid artery from radial access using a Simmons guide catheter. J NeuroIntervent Surg. 2022;14(2):169–73. Nazari P, Golnari P, Hurley MC, Shaibani A, Ansari SA, Potts MB, et al. Carotid stenting without embolic protection increases major adverse events: analysis of the national surgical quality improvement program. AJNR Am J Neuroradiol. 2021;42(7):1264–9. Kleindorfer DO, Towfighi A, Chaturvedi S, Cockroft KM, Gutierrez J, Lombardi-Hill D, et al. 2021 guideline for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline from the American heart association/American stroke association. Stroke. 2021;52(7):e364–e467. Naylor R, Rantner B, Ancetti S, de Borst GJ, De Carlo M, Halliday A, et al. European society for vascular surgery (ESVS) 2023 clinicalpractice guidelines on the management of atherosclerotic carotid and vertebral artery disease. Eur J Vasc Endovasc Surg. 2022; https://doi.org/10.1016/j.ejvs.2022.06.022. Bonati LH, Kakkos S, Berkefeld J, de Borst GJ, Bulbulia R, Halliday A, et al. European stroke organisation guideline on endarterectomy and stenting for carotid artery stenosis. Eur Stroke J. 2021;6(2):I–xlvii. Carraro do Nascimento V, de Villiers L, Hughes I, Ford A, Rapier C, Rice H. Transradial versus transfemoral arterial approach for cerebral angiography and the frequency of embolic events on diffusion weighted MRI. J Neurointerv Surg. 2022; https://doi.org/10.1136/jnis-2022-019009. Wilkinson DA, Majmundar N, Catapano JS, Fredrickson VL, Cavalcanti DD, Baranoski JF, et al. Transradial cerebral angiography becomes more efficient than transfemoral angiography: lessons from 500 consecutive angiograms. J Neurointerv Surg. 2022;14(4):397–402. Knox JA, Alexander MD, McCoy DB, Murph DC, Hinckley PJ, Ch’ang JC, et al. Impact of aortic arch anatomy on technical performance and clinical outcomes in patients with acute ischemic stroke. Ajnr Am J Neuroradiol. 2020;41(2):268–73. Alverne F, Lima FO, Rocha FA, Bandeira DA, Lucena AF, Silva HC, et al. Unfavorable vascular anatomy during endovascular treatment of stroke: challenges and bailout strategies. J Stroke. 2020;22(2):185–202. Müller MD, Lyrer P, Brown MM, Bonati LH. Carotid artery stenting versus endarterectomy for treatment of carotid artery stenosis. Cochrane Database Syst Rev. 2020;2(2):Cd515. Chen SH, Snelling BM, Sur S, Shah SS, McCarthy DJ, Luther E, et al. Transradial versus transfemoral access for anterior circulation mechanical thrombectomy: comparison of technical and clinical outcomes. J Neurointerv Surg. 2019;11(9):874–8. Munich SA, Vakharia K, McPheeters MJ, Waqas M, Tso MK, Levy EI, et al. Transition to transradial access for mechanical thrombectomy-lessons learned and comparison to transfemoral access in a single-center case series. Oper Neurosurg. 2020;19(6):701–7. Snelling BM, Sur S, Shah SS, Khandelwal P, Caplan J, Haniff R, et al. Transradial cerebral angiography: techniques and outcomes. J Neurointerv Surg. 2018;10(9):874–81. Snelling BM, Sur S, Shah SS, Chen S, Menaker SA, McCarthy DJ, et al. Unfavorable vascular anatomy is associated with increased revascularization time and worse outcome in anterior circulation thrombectomy. World Neurosurg. 2018;120:e976–e83. Almallouhi E, Al Kasab S, Sattur MG, Lena J, Jabbour PM, Sweid A, et al. Incorporation of transradial approach in neuroendovascular procedures: defining benchmarks for rates of complications and conversion to femoral access. J Neurointerv Surg. 2020;12(11):1122–6. Stone JG, Zussman BM, Tonetti DA, Brown M, Desai SM, Gross BA, et al. Transradial versus transfemoral approaches for diagnostic cerebral angiography: a prospective, single-center, non-inferiority comparative effectiveness study. J Neurointerv Surg. 2020;12(10):993–8. Zussman BM, Tonetti DA, Stone J, Brown M, Desai SM, Gross BA, et al. Maturing institutional experience with the transradial approach for diagnostic cerebral arteriography: overcoming the learning curve. J Neurointerv Surg. 2019;11(12):1235–8. Brunet MC, Chen SH, Peterson EC. Transradial access for neurointerventions: management of access challenges and complications. J Neurointerv Surg. 2020;12(1):82–6. Alkagiet S, Petroglou D, Nikas DN, Kolettis TM. Access-site complications of the transradial approach: rare but still there. Curr Cardiol Rev. 2021;17(3):279–93. Rashid M, Kwok CS, Pancholy S, Chugh S, Kedev SA, Bernat I, et al. Radial artery occlusion after transradial interventions: a systematic review and meta-analysis. J Am Heart Assoc. 2016;5(1):e2686. https://doi.org/10.1161/JAHA.115.002686. Sandoval Y, Bell MR, Gulati R. Transradial artery access complications. Circ Cardiovasc Interv. 2019;12(11):e7386. Bernat I, Aminian A, Pancholy S, Mamas M, Gaudino M, Nolan J, et al. Best practices for the prevention of radial artery occlusion after transradial diagnostic angiography and intervention: an international consensus paper. JACC Cardiovasc Interv. 2019;12(22):2235–46. Starke RM, Snelling B, Al-Mufti F, Gandhi CD, Lee SK, Dabus G, et al. Transarterial and transvenous access for neurointerventional surgery: report of the SNIS standards and guidelines committee. J Neurointerv Surg. 2020;12(8):733–41. Snelling BM, Sur S, Shah SS, Marlow MM, Cohen MG, Peterson EC. Transradial access: lessons learned from cardiology. J Neurointerv Surg. 2018;10(5):487–92. Tso MK, Rajah GB, Dossani RH, Meyer MJ, McPheeters MJ, Vakharia K, et al. Learning curves for transradial access versus transfemoral access in diagnostic cerebral angiography: a case series. J Neurointerv Surg. 2022;14(2):174–8. Le J, Bangalore S, Guo Y, Iqbal SN, Xu J, Miller LH, et al. Predictors of access site crossover in patients who underwent transradial coronary angiography. Am J Cardiol. 2015;116(3):379–83. Hanaoka Y, Koyama JI, Ogiwara T, Miyaoka Y, Fujii Y, Nakamura T, et al. Usefulness of a novel technique to make up for a deficiency in transradial neurointervention with a 6 Fr simmonds guiding sheath: original experience with the subclavian artery anchoring technique. World Neurosurg. 2019;131:e362–e70.