Systematic Fitting and Comparison of Hyperelastic Continuum Models for Elastomers
Tóm tắt
Hyperelasticity is a common modeling approach to reproduce the nonlinear mechanical behavior of rubber materials at finite deformations. It is not only employed for stand-alone, purely elastic models but also within more sophisticated frameworks like viscoelasticity or Mullins-type softening. The choice of an appropriate strain energy function and identification of its parameters is of particular importance for reliable simulations of rubber products. The present manuscript provides an overview of suitable hyperelastic models to reproduce the isochoric as well as volumetric behavior of nine widely used rubber compounds. This necessitates firstly a discussion on the careful preparation of the experimental data. More specific, procedures are proposed to properly treat the preload in tensile and compression tests as well as to proof the consistency of experimental data from multiple experiments. Moreover, feasible formulations of the cost function for the parameter identification in terms of the stress measure, error type as well as order of the residual norm are studied and their effect on the fitting results is illustrated. After these preliminaries, invariant-based strain energy functions with decoupled dependencies on all three principal invariants are employed to identify promising models for each compound. Especially, appropriate parameter constraints are discussed and the role of the second invariant is analyzed. Thus, this contribution may serve as a guideline for the process of experimental characterization, data processing, model selection and parameter identification for existing as well as new materials.
Tài liệu tham khảo
Alexander H (1968) A constitutive relation for rubber-like materials. Int J Eng Sci 6(9):549–563. https://doi.org/10.1016/0020-7225(68)90006-2
ANSYS, Inc. (1999) ANSYS theory reference release 5.6
Arruda EM, Boyce MC (1993) A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech Phys Solids 41(2):389–412. https://doi.org/10.1016/0022-5096(93)90013-6
Baaser H, Hopmann C, Schobel A (2013) Reformulation of strain invariants at incompressibility. Arch Appl Mech 83(2):273–280. https://doi.org/10.1007/s00419-012-0652-2
Baker M, Ericksen JL (1954) Inequalities restricting the form of the stress-deformation relations for isotropic elastic solids and reiner-rivlin fluids. J Wash Acad Sci 44(2):33–35
Ball JM (1976) Convexity conditions and existence theorems in nonlinear elasticity. Arch Ration Mech Anal 63(4):337–403. https://doi.org/10.1007/bf00279992
Beatty MF (1987) Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues—with examples. Appl Mech Rev 40(12):1699–1734. https://doi.org/10.1115/1.3149545
Beatty MF (2007) On constitutive models for limited elastic, molecular based materials. Math Mech Solids 13(5):375–387. https://doi.org/10.1177/1081286507076405
Becker GW (1967) On the phenomenological description of the nonlinear deformation behavior of rubberlike high polymers. J Polym Sci Polym Symp 16(5):2893–2903. https://doi.org/10.1002/polc.5070160543
Beda T (2004) Reconciling the fundamental phenomenological expression of the strain energy of rubber with established experimental facts. J Polym Sci B: Polym Phys 43(2):125–134. https://doi.org/10.1002/polb.20308
Beda T (2014) An approach for hyperelastic model-building and parameters estimation a review of constitutive models. Eur Polym J 50:97–108. https://doi.org/10.1016/j.eurpolymj.2013.10.006
bin Othman A, Gregory MJ (1990) A stress-strain relationship for filled rubber. J Nat Rubber Res 5(2):144–155
Boyce MC, Arruda EM (2000) Constitutive models of rubber elasticity: a review. Rubber Chem Technol 73(3):504–523. https://doi.org/10.5254/1.3547602
Bronshtein IN, Semendyayev KA, Musiol G, Muehlig H (2007) Handbook of mathematics, 5th edn. Springer, Berlin, Heidelberg
Budday S, Sommer G, Haybaeck J, Steinmann P, Holzapfel GA, Kuhl E (2017) Rheological characterization of human brain tissue. Acta Biomater 60:315–329. https://doi.org/10.1016/j.actbio.2017.06.024
Carroll MM (2010) A strain energy function for vulcanized rubbers. J Elast 103(2):173–187. https://doi.org/10.1007/s10659-010-9279-0
Champagne J, Cantournet S, Colombo D, Jamonneau S, Le Gorju K, Lequeux F, Montes H (2020) Role of glassy bridges on the mechanics of filled rubbers under pressure. Macromolecules 53(10):3728–3737. https://doi.org/10.1021/acs.macromol.0c00395
Chevalier L, Marco Y (2002) Tools for multiaxial validation of behavior laws chosen for modeling hyper-elasticity of rubber-like materials. Polym Eng Sci 42(2):280–298. https://doi.org/10.1002/pen.10948
Cohen A (1991) A Padé approximant to the inverse langevin function. Rheol Acta 30(3):270–273. https://doi.org/10.1007/bf00366640
Dal H, Badienia Y, Açikgöz K, Aksu Denlï F (2019) A comparative study on hyperelastic constitutive models on rubber: state of the art after 2006. In: Huneau B, Le Cam JB, Marco Y, Verron E (eds) Proceedings of the ECCMR XI. CRC Press, pp 239–244
Dal H, Gültekin O, Açıkgöz K (2020) An extended eight-chain model for hyperelastic and finite viscoelastic response of rubberlike materials: theory, experiments and numerical aspects. J Mech Phys Solids 145:104159. https://doi.org/10.1016/j.jmps.2020.104159
Dal H, Açıkgöz K, Badienia Y (2021) On the performance of isotropic hyperelastic constitutive models for rubber-like materials: a state of the art review. Appl Mech Rev. https://doi.org/10.1115/1.4050978
Davies CKL, De DK, Thomas AG (1994) Characterization of the behavior of rubber for engineering design purposes. 1. Stress-strain relations. Rubber Chem Technol 67(4):716–728. https://doi.org/10.5254/1.3538706
Destrade M, Saccomandi G, Sgura I (2017) Methodical fitting for mathematical models of rubber-like materials. Proc R Soc A 473(2198):20160811. https://doi.org/10.1098/rspa.2016.0811
Dobrynin AV, Carrillo J-MY (2011) Universality in nonlinear elasticity of biological and polymeric networks and gels. Macromolecules 44(1):140–146. https://doi.org/10.1021/ma102154u
Doll S, Schweizerhof K (2000) On the development of volumetric strain energy functions. J Appl Mech 67(1):17–21. https://doi.org/10.1115/1.321146
Dorfmann A, Fuller KNG, Ogden RW (2002) Shear, compressive and dilatational response of rubberlike solids subject to cavitation damage. Int J Solids Struct 39(7):1845–1861. https://doi.org/10.1016/s0020-7683(02)00008-2
Drucker DC (1959) A definition of stable inelastic material. J Appl Mech 26(1):101–106. https://doi.org/10.1115/1.4011929
Edwards SF, Vilgis T (1986) The effect of entanglements in rubber elasticity. Polymer 27(4):483–492. https://doi.org/10.1016/0032-3861(86)90231-4
Fu X, Wang Z, Ma L (2021) Ability of constitutive models to characterize the temperature dependence of rubber hyperelasticity and to predict the stress-strain behavior of filled rubber under different deformation states. Polymers 13(3):369. https://doi.org/10.3390/polym13030369
Gent AN (1996) A new constitutive relation for rubber. Rubber Chem Technol 69(1):59–61. https://doi.org/10.5254/1.3538357
Gent AN, Thomas AG (1958) Forms for the stored (strain) energy function for vulcanized rubber. J Polym Sci 28(118):625–628. https://doi.org/10.1002/pol.1958.1202811814
Gorash Y, Comlekci T, Hamilton R (2015) CAE-based application for identification and verification of hyperelastic parameters. Proc Inst Mech Eng L 231(7):611–626. https://doi.org/10.1177/1464420715604004
Gottlieb M, Gaylord RJ (1987) Experimental tests of entanglement models of rubber elasticity. 3. Biaxial deformations. Macromolecules 20(1):130–138. https://doi.org/10.1021/ma00167a022
Gregory IH, Muhr AH, Stephens IJ (1997) Engineering applications of rubber in simple extension. Plast Rubber Compos Process Appl 26(3):117–122
Haines DW, Wilson WD (1979) Strain-energy density function for rubberlike materials. J Mech Phys Solids 27(4):345–360. https://doi.org/10.1016/0022-5096(79)90034-6
Hart-Smith LJ (1966) Elasticity parameters for finite deformations of rubber-like materials. ZAMP 17(5):608–626. https://doi.org/10.1007/bf01597242
Hartmann S, Neff P (2003) Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int J Solids Struct 40(11):2767–2791. https://doi.org/10.1016/s0020-7683(03)00086-6
Haupt P (2002) Continuum mechanics and theory of materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04775-0
Haupt P, Sedlan K (2001) Viscoplasticity of elastomeric materials: experimental facts and constitutive modelling. Arch Appl Mech 71(2–3):89–109. https://doi.org/10.1007/s004190000102
He H, Zhang Q, Zhang Y, Chen J, Zhang L, Li F (2021) A comparative study of 85 hyperelastic constitutive models for both unfilled rubber and highly filled rubber nanocomposite material. Nano Mater Sci. https://doi.org/10.1016/j.nanoms.2021.07.003
Heinrich G, Kaliske M (1997) Theoretical and numerical formulation of a molecular based constitutive tube-model of rubber elasticity. Comput Theor Polym Sci 7(3–4):227–241. https://doi.org/10.1016/s1089-3156(98)00010-5
Heuillet P, Dugautier L (1997) Modélisation du comportement hyperélastique des caoutchoucs et élastomères thermoplastiques, compacts ou cellulaires. In: Génie mécanique des caoutchoucs et des élastomères thermoplastiques, pp 67–103
Hill R (1958) A general theory of uniqueness and stability in elastic-plastic solids. J Mech Phys Solids 6(3):236–249. https://doi.org/10.1016/0022-5096(58)90029-2
Hohenberger TW, Windslow RJ, Pugno NM, Busfield JJC (2019) A constitutive model for both low and high strain nonlinearities in highly filled elastomers and implementation with user-defined material subroutines in Abaqus. Rubber Chem Technol 92(4):653–686. https://doi.org/10.5254/rct.19.80387
Horgan CO, Saccomandi G (2006) Phenomenological hyperelastic strain-stiffening constitutive models for rubber. Rubber Chem Technol 79(1):152–169. https://doi.org/10.5254/1.3547924
Hoss L, Marczak RJ (2009) A new constitutive model for rubber-like materials. In: Proceedings of the 20th COBEM
Hossain M, Steinmann P (2013) More hyperelastic models for rubber-like materials: consistent tangent operators and comparative study. J Mech Behav Mater 22(1–2):27–50. https://doi.org/10.1515/jmbm-2012-0007
Hossain M, Amin AFMS, Kabir MN (2015) Eight-chain and full-network models and their modified versions for rubber hyperelasticity: a comparative study. J Mech Behav Mater 24(1–2):11–24. https://doi.org/10.1515/jmbm-2015-0002
Ilseng A, Skallerud BH, Clausen AH (2015) Volumetric compression of HNBR and FKM elastomers. In: Marvalová B, Petriková I (eds) Proceedings of the ECCMR IX. CRC Press, pp 235–241
Isihara A, Hashitsume N, Tatibana M (1951) Statistical theory of rubber-like elasticity IV. Two-dimensional stretching. J Chem Phys 19(12):1508–1512. https://doi.org/10.1063/1.1748111
James AG, Green A, Simpson GM (1975) Strain energy functions of rubber I. Characterization of gum vulcanizates. J Appl Polym Sci 19(7):2033–2058. https://doi.org/10.1002/app.1975.070190723
Jones DF, Treloar LRG (1975) The properties of rubber in pure homogeneous strain. J Phys D Appl Phys 8(11):1285–1304. https://doi.org/10.1088/0022-3727/8/11/007
Kaliske M, Heinrich G (1999) An extended tube-model for rubber elasticity: statistical-mechanical theory and finite element implementation. Rubber Chem Technol 72(4):602–632. https://doi.org/10.5254/1.3538822
Kawabata S, Kawai H (1977) Strain energy density functions of rubber vulcanizates from biaxial extension. In: Molecular properties. Springer, Berlin, Heidelberg, pp 89–124. https://doi.org/10.1007/3-540-08124-0_2
Kawabata S, Matsuda M, Tei K, Kawai H (1981) Experimental survey of the strain energy density function of isoprene rubber vulcanizate. Macromolecules 14(1):154–162. https://doi.org/10.1021/ma50002a032
Khajehsaeid H, Arghavani J, Naghdabadi R (2013) A hyperelastic constitutive model for rubber-like materials. Eur J Mech A Solids 38:144–151. https://doi.org/10.1016/j.euromechsol.2012.09.010
Khiêm VN, Itskov M (2016) Analytical network-averaging of the tube model: rubber elasticity. J Mech Phys Solids 95:254–269. https://doi.org/10.1016/j.jmps.2016.05.030
Kilian H-G (1985) An interpretation of the strain-invariants in largely strained networks. Colloid Polym Sci 263(1):30–34. https://doi.org/10.1007/bf01411245
Klingbeil WW, Shield RT (1964) Some numerical investigations on empirical strain energy functions in the large axi-symmetric extensions of rubber membranes. ZAMP 15(6):608–629. https://doi.org/10.1007/bf01595147
Knowles JK (1977) The finite anti-plane shear field near the tip of a crack for a class of incompressible elastic solids. Int J Fract 13(5):611–639. https://doi.org/10.1007/bf00017296
Korelc J, Wriggers P (2016) Automation of finite-element-methods. Springer, Switzerland
Lambert-Diani J, Rey C (1999) New phenomenological behavior laws for rubbers and thermoplastic elastomers. Eur J Mech A Solids 18(6):1027–1043. https://doi.org/10.1016/s0997-7538(99)00147-3
Lim GT (2005) Scratch behavior of polymers. PhD thesis, Texas A&M University
Lion A (1997) A physically based method to represent the thermo-mechanical behaviour of elastomers. Acta Mech 123(1–4):1–25. https://doi.org/10.1007/bf01178397
Liu CH, Mang HA (1996) A critical assessment of volumetric strain energy functions for hyperelasticity at large strains. ZAMM 76(S5):301–350. https://doi.org/10.1002/zamm.19960761509
Mansouri MR, Darijani H (2014) Constitutive modeling of isotropic hyperelastic materials in an exponential framework using a self-contained approach. Int J Solids Struct 51(25–26):4316–4326. https://doi.org/10.1016/j.ijsolstr.2014.08.018
Marckmann G, Verron E (2006) Comparison of hyperelastic models for rubber-like materials. Rubber Chem Technol 79(5):835–858. https://doi.org/10.5254/1.3547969
Marsden JE, Hughes TJR (1994) Mathematical foundations of elasticity. Dover Publications, New York
Martins PALS, Jorge RMN, Ferreira AJM (2006) A comparative study of several material models for prediction of hyperelastic properties: application to silicone-rubber and soft tissues. Strain 42(3):135–147. https://doi.org/10.1111/j.1475-1305.2006.00257.x
Meier P, Khader S, Preuß R, Dietrich J, Voges D (2003) Uniaxial and equi-biaxial tension tests of silicone elastomer. In: Busfield J, Muhr A (eds) Proceedings of the ECCMR III. A.A. Balkema Publishers, pp 99–106
Meunier L, Chagnon G, Favier D, Orgéas L, Vacher P (2008) Mechanical experimental characterisation and numerical modelling of an unfilled silicone rubber. Polym Test 27(6):765–777. https://doi.org/10.1016/j.polymertesting.2008.05.011
Miehe C, Göktepe S, Lulei F (2004) A micro-macro approach to rubber-like materials—part I: the non-affine micro-sphere model of rubber elasticity. J Mech Phys Solids 52(11):2617–2660. https://doi.org/10.1016/j.jmps.2004.03.011
Mihai LA, Goriely A (2017) How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic finite elasticity. Proc R Soc A 473(2207):20170607. https://doi.org/10.1098/rspa.2017.0607
Mihai LA, Chin L, Janmey PA, Goriely A (2015) A comparison of hyperelastic constitutive models applicable to brain and fat tissues. J R Soc Interface 12(110):20150486. https://doi.org/10.1098/rsif.2015.0486
Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11(9):582–592. https://doi.org/10.1063/1.1712836
Neff P, Ghiba I-D, Lankeit J (2015) The exponentiated Hencky-logarithmic strain energy. Part I: constitutive issues and rank-one convexity. J Elast 121(2):143–234. https://doi.org/10.1007/s10659-015-9524-7
Ogden RW (1972) Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids. Proc R Soc A 326(1567):565–584. https://doi.org/10.1098/rspa.1972.0026
Ogden RW (1972) Large deformation isotropic elasticity: on the correlation of theory and experiment for compressible rubberlike solids. Proc R Soc A 328(1575):567–583. https://doi.org/10.1098/rspa.1972.0096
Ogden RW (1997) Non-linear elastic deformations. Dover Publications, New York
Plagge J, Ricker A, Kröger NH, Wriggers P, Klüppel M (2020) Efficient modeling of filled rubber assuming stress-induced microscopic restructurization. Int J Eng Sci 151:103291. https://doi.org/10.1016/j.ijengsci.2020.103291
Pucci E, Saccomandi G (2002) A note on the gent model for rubber-like materials. Rubber Chem Technol 75(5):839–852. https://doi.org/10.5254/1.3547687
Ricker A, Kröger NH (2019) Influence of various curing systems and carbon black content on the bulk modulus of EPDM rubber. In: Huneau B, Le Cam JB, Marco Y, Verron E (eds) Proceedings of the ECCMR XI. CRC Press, pp 200–205
Ricker A, Fehse A, Kröger NH (2020) Charakterisierung sowie Modellbildung zur Beschreibung von Kompressionsmoduln technischer Gummiwerkstoffe. Schlussbericht zu IGF-Vorhaben Nr. 19916 N, Deutsches Institut für Kautschuktechnologie e.V.
Rivlin RS, Saunders DW (1951) Large elastic deformations of isotropic materials. VII. Experiments on the deformation of rubber. Philos Trans R Soc A 243(865):251–288. https://doi.org/10.1098/rsta.1951.0004
Schröder J, Neff P (2003) Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int J Solids Struct 40(2):401–445. https://doi.org/10.1016/s0020-7683(02)00458-4
Schönherr JA, Schneider P, Mittelstedt C (2022) Robust hybrid/mixed finite elements for rubber-like materials under severe compression. Comput Mech. https://doi.org/10.1007/s00466-022-02157-y
Seibert DJ, Schöche N (2000) Direct comparison of some recent rubber elasticity models. Rubber Chem Technol 73(2):366–384. https://doi.org/10.5254/1.3547597
Simo JC, Taylor RL (1982) Penalty function formulations for incompressible nonlinear elastostatics. Comput Methods Appl Mech Eng 35(1):107–118. https://doi.org/10.1016/0045-7825(82)90035-4
Simo JC, Taylor RL (1991) Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms. Comput Methods Appl Mech Eng 85(3):273–310. https://doi.org/10.1016/0045-7825(91)90100-k
Steinmann P, Hossain M, Possart G (2012) Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar’s data. Arch Appl Mech 82(9):1183–1217. https://doi.org/10.1007/s00419-012-0610-z
Swanson SR (1985) A constitutive model for high elongation elastic materials. J Eng Mater Technol 107(2):110–114. https://doi.org/10.1115/1.3225782
Thiel C, Voss J, Martin RJ, Neff P (2019) Shear, pure and simple. Int J Non Linear Mech 112:57–72. https://doi.org/10.1016/j.ijnonlinmec.2018.10.002
Timbrell C, Wiehahn M, Cook G, Muhr AH (2003) Simulation of crack propagation in rubber. In: Busfield J, Muhr A (eds) Proceedings of the ECCMR III. A.A. Balkema Publishers, pp 11–20
Treloar LRG (1944) Stress-strain data for vulcanised rubber under various types of deformation. Trans Faraday Soc 40:59. https://doi.org/10.1039/tf9444000059
Vahapoğlu V, Karadeniz S (2006) Constitutive equations for isotropic rubber-like materials using phenomenological approach: a bibliography (1930–2003). Rubber Chem Technol 79(3):489–499. https://doi.org/10.5254/1.3547947
Valanis KC, Landel RF (1967) The strain-energy function of a hyperelastic material in terms of the extension ratios. J Appl Phys 38(7):2997–3002. https://doi.org/10.1063/1.1710039
Vangerko H, Treloar LRG (1978) The inflation and extension of rubber tube for biaxial strain studies. J Phys D Appl Phys 11(14):1969–1978. https://doi.org/10.1088/0022-3727/11/14/009
Wall FT (1942) Statistical thermodynamics of rubber II. J Chem Phys 10(7):485–488. https://doi.org/10.1063/1.1723753
Xiang Y, Zhong D, Wang P, Mao G, Yu H, Qu S (2018) A general constitutive model of soft elastomers. J Mech Phys Solids 117:110–122. https://doi.org/10.1016/j.jmps.2018.04.016
Yamashita Y, Kawabata S (1992) Approximated form of the strain energy-density function of carbon-black filled rubbers for industrial applications. Nippon Gomu Kyokaishi 65(9):517–528. https://doi.org/10.2324/gomu.65.517
Yeoh OH (1990) Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chem Technol 63(5):792–805. https://doi.org/10.5254/1.3538289
Yeoh OH (1993) Some forms of the strain energy function for rubber. Rubber Chem Technol 66(5):754–771. https://doi.org/10.5254/1.3538343
Yeoh OH, Fleming PD (1997) A new attempt to reconcile the statistical and phenomenological theories of rubber elasticity. J Polym Sci B: Polym Phys 35(12):1919–1931. https://doi.org/10.1002/(SICI)1099-0488(19970915)35:12<1919::AID-POLB7>3.0.CO;2-K
Zhao Z, Mu X, Du F (2019) Modeling and verification of a new hyperelastic model for rubber-like materials. Math Probl Eng 1–10:2019. https://doi.org/10.1155/2019/2832059