System Ho-Rh-O: Phase Equilibria, Chemical Potentials and Gibbs Energy of Formation of HoRhO3

Journal of Phase Equilibria and Diffusion - Tập 33 - Trang 429-436 - 2012
K. T. Jacob1, Juhi Sharma1, Preeti Gupta1
1Department of Materials Engineering, Indian Institute of Science, Bangalore, India

Tóm tắt

The thermodynamic properties of the HoRhO3 were determined in the temperature range from 900 to 1300 K by using a solid-state electrochemical cell incorporating calcia-stabilized zirconia as the electrolyte. The standard Gibbs free energy of formation of orthorhombic perovskite HoRhO3, from Ho2O3 with C-rare earth structure and Rh2O3 with orthorhombic structure, can be expressed by the equation; $$ \Updelta G_{{{\text{f}}({\text{ox}})}}^{ \circ } \left( { \pm 78} \right)/({\text{J}}/{\text{mol}}) = - 50535 + 3.85\left( {T/{\text{K}}} \right) $$ Using the thermodynamic data of HoRhO3 and auxiliary data for binary oxides from the literature, the phase relations in the Ho-Rh-O system were computed at 1273 K. Thermodynamic data for intermetallic phases in the binary Ho-Rh were estimated from experimental enthalpy of formation for three compositions from the literature and Miedema’s model, consistent with the phase diagram. The oxygen potential-composition diagram and three-dimensional chemical potential diagram at 1273 K, and temperature-composition diagrams at constant oxygen partial pressures were computed for the system Ho-Rh-O. The decomposition temperature of HoRhO3 is 1717(±2) K in pure O2 and 1610(±2) K in air at a total pressure p o = 0.1 MPa.

Tài liệu tham khảo

H.J. Gysling, J.R. Monnier, and G. Apai, Synthesis, Characterization, and Catalytic Activity of LaRhO3, J. Catal., 1987, 103, p 407-418 H. Jarrett, H.H.C. Kung, and A. W. Sleight, Photolysis of Water Using Rhodate Semiconductive Electrodes, U.S. Patent 4,144,147, 1979. H.S. Jarrett, A.W. Sleight, H.H. Kung, and J.L. Gillson, Photoelectrochemical and Solid-State Properties of LuRhO3, J. Appl. Phys., 1980, 51(7), p 3916-3925 K.T. Jacob and M.V. Sriram, Phase Relations and Gibbs Energies in the System Mn-Rh-O, Metall. Mater. Trans. A, 1994, 25, p 1347-1357 K.T. Jacob and Y. Waseda, Phase Relations in the System La-Rh-O and Thermodynamic Properties of LaRhO3, J. Am. Ceram. Soc., 1995, 78(2), p 440-444 K.T. Jacob, S. Priya, and Y. Waseda, Thermodynamic Mixing Properties and Solid-State Immiscibility in the Systems Pd-Rh and Pd-Rh-O, J. Phase Equilib., 1998, 19(4), p 340-350 K.T. Jacob, S. Priya, and Y. Waseda, Alloy-Oxide Equilibria in the System Pt-Rh-O, Bull. Mater. Sci., 1998, 21, p 99-103 K.T. Jacob, T.H. Okabe, T. Uda, and Y. Waseda, System Cu-Rh-O: Phase Diagram and Thermodynamic Properties of Ternary Oxides CuRhO2 and CuRh2O4, Bull. Mater. Sci., 1999, 22(4), p 741-749 K.T. Jacob, T. Uda, T.H. Okabe, and Y. Waseda, Phase Equilibria and Thermodynamics of (Silver + Rhodium + Oxygen), J. Chem. Thermodyn., 2000, 32, p 1399-1408 K.T. Jacob and Y. Waseda, Solid State Cells with Buffer Electrodes for Measurement of Chemical Potentials and Gibbs Energies of Formation: System Ca-Rh-O, J. Solid State Chem., 2000, 150, p 213-220 K.T. Jacob, C. Shekhar, and Y. Waseda, Phase Relations in the System (Chromium + Rhodium + Oxygen) and Thermodynamic Properties of CrRhO3, J. Chem. Thermodyn., 2009, 41, p 56-61 K.T. Jacob, C. Shekhar, and Y. Waseda, Phase Relations in the System Ta-Rh-O and Thermodynamic Properties of TaRhO4, Mater. Chem. Phys., 2009, 116, p 289-293 K.T. Jacob, D. Prusty, and G.M. Kale, Phase Relations and Gibbs Energies of Spinel Phases and Solid Solutions in the System Mg-Rh-O, J. Alloys Compd., 2012, 513, p 365-372 V.B. Lazarev and I.S. Shaplygin, Electrical Properties of Mixed Oxides Containing a Platinum Metal and a Non-Noble Metal, Russ. J. Inorg. Chem., 1978, 23(2), p 163-170 V.N. Skrobot, Subsolidus Phase Relations in the Ho2O3-Rh2O3 System, Russ. J. Inorg. Chem., 2002, 47(12), p 1877-1881 J.B. Goodenough, Magnetism and the Chemical Bond, Wiley Interscience, New York, 1963, p 221 L.R. Morss, P.P. Day, C. Felinto, and H. Brito, Standard Molar Enthalpies of Formation of Y2O3, Ho2O3, and Er2O3 at the Temperature 298.15 K, J. Chem. Thermodyn., 1993, 25, p 415-422 E.J. Huber, Jr., E.L. Head, and C.E. Holley, Jr., The Heat of Combustion of Holmium, J. Chem. Phys., 1957, 61, p 1021-1022 L.B. Pankratz, Thermodynamic Properties of Elements and Oxides, Bulletin 672, United States Bureau of Mines, 1982, p 195. K.T. Jacob, T. Uda, T.H. Okabe, and Y. Waseda, The Standard Enthalpy and Entropy of Formation of Rh2O3—a Third-Law Optimization, High Temp. Mater. Process., 2000, 19, p 11-16 T.B. Massalaski, P.R. Subramaniam, H. Okamoto, and L. Kacprzak, Ed., Binary Alloy Phase Diagrams, Vol 3, 2nd ed., ASM International, Materials Park, OH, 1990 Q. Guo and O.J. Kleppa, Standard Enthalpies of Formation of Some Holmium Alloys, Ho + Me (Me = Ni, Ru, Rh, Pd, Ir, Pt), Determined by High Temperature Direct Synthesis Calorimetry, J. Alloys Compd., 1996, 234, p 280-286 A.K. Niessen, F.R. de Boer, R. Boom, P.F. de Chatel, W.C.M. Mattens, and A.R. Miedema, Model Predictions for the Enthalpy of Formation of Transition Metal Alloys II, Calphad, 1983, 7, p 51-70 S.V. Varamban and K.T. Jacob, Thermodynamic Constraints along Isograms in Ternary Systems: Application to Three-Phase Equilibria, Mater. Sci. Eng. B, 1997, 49, p 100-109