Synthetic metabolism approaches: A valuable resource for systems biology

Current Opinion in Systems Biology - Tập 30 - Trang 100417 - 2022
Sebastian Wenk1, Nico J. Claassens2, Steffen N. Lindner1,3
1Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
2Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
3Department of Biochemistry, Charité Universitätsmedizin, Virchowweg 6, 10117 Berlin, Germany

Tài liệu tham khảo

Voigt, 2020, Synthetic biology 2020–2030: six commercially-available products that are changing our world, Nat Commun, 11, 10, 10.1038/s41467-020-20122-2 Anderson, 2018, Synthetic biology strategies for improving microbial synthesis of “green” biopolymers, J Biol Chem, 293, 5053, 10.1074/jbc.TM117.000368 Dvořák, 2017, Bioremediation 3.0: engineering pollutant-removing bacteria in the times of systemic biology, Biotechnol Adv, 35, 845, 10.1016/j.biotechadv.2017.08.001 Rylott, 2020, How synthetic biology can help bioremediation, Curr Opin Chem Biol, 58, 86, 10.1016/j.cbpa.2020.07.004 Bar-Even, 2010, Design and analysis of synthetic carbon fixation pathways, Proc Natl Acad Sci Unit States Am, 107, 8889, 10.1073/pnas.0907176107 Satanowski, 2020, A one-carbon path for fixing CO2, EMBO Rep, 21, 1 Erb, 2017, Synthetic metabolism: metabolic engineering meets enzyme design, Curr Opin Chem Biol, 37, 56, 10.1016/j.cbpa.2016.12.023 Gleizer, 2019, Conversion of Escherichia coli to generate all biomass carbon from CO2, Cell, 179, 1255, 10.1016/j.cell.2019.11.009 Kim, 2020, Growth of E. coli on formate and methanol via the reductive glycine pathway, Nat Chem Biol, 10.1038/s41589-020-0473-5 Cotton, 2020, Renewable methanol and formate as microbial feedstocks, Curr Opin Biotechnol, 62, 168, 10.1016/j.copbio.2019.10.002 Yishai, 2016, The formate bio-economy, Curr Opin Chem Biol, 35, 1, 10.1016/j.cbpa.2016.07.005 Meng, 2020, The second decade of synthetic biology: 2010–2020, Nat Commun, 11, 1, 10.1038/s41467-020-19092-2 Qi, 2013, Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression, Cell, 152, 1173, 10.1016/j.cell.2013.02.022 Orsi, 2021, Growth-coupled selection of synthetic modules to accelerate cell factory development, Nat Commun, 12, 1, 10.1038/s41467-021-25665-6 Wenk, 2018 Yishai, 2018, In vivo assimilation of one-carbon via a synthetic reductive glycine pathway in Escherichia coli, ACS Synth Biol, 7, 2023, 10.1021/acssynbio.8b00131 Wang, 2019, Developing a pyruvate-driven metabolic scenario for growth-coupled microbial production, Metab Eng, 55, 191, 10.1016/j.ymben.2019.07.011 Mehrer, 2019, Growth-coupled bioconversion of levulinic acid to butanone, Metab Eng, 55, 92, 10.1016/j.ymben.2019.06.003 Portnoy, 2011, Adaptive laboratory evolution-harnessing the power of biology for metabolic engineering, Curr Opin Biotechnol, 22, 590, 10.1016/j.copbio.2011.03.007 Slatko, 2018, Overview of next-generation sequencing technologies, Curr Protoc Mol Biol, 122, 1, 10.1002/cpmb.59 Bustin, 2000, Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays, J Mol Endocrinol, 25, 169, 10.1677/jme.0.0250169 Claassens, 2020, Replacing the Calvin cycle with the reductive glycine pathway in Cupriavidus necator, Metab Eng, 62, 30, 10.1016/j.ymben.2020.08.004 Kim, 2018, Exploiting transcriptomic data for metabolic engineering: toward a systematic strain design, Curr Opin Biotechnol, 54, 26, 10.1016/j.copbio.2018.01.020 Lowe, 2017, Transcriptomics technologies, PLoS Comput Biol, 13, 1, 10.1371/journal.pcbi.1005457 Baidoo, 2019, Microbial metabolomics methods and protocols, 10.1007/978-1-4939-8757-3 Vavricka, 2020, Dynamic metabolomics for engineering biology: accelerating learning cycles for bioproduction, Trends Biotechnol, 38, 68, 10.1016/j.tibtech.2019.07.009 Chae, 2017, Recent advances in systems metabolic engineering tools and strategies, Curr Opin Biotechnol, 47, 67, 10.1016/j.copbio.2017.06.007 Heux, 2017, Recent advances in high-throughput 13C-fluxomics, Curr Opin Biotechnol, 43, 104, 10.1016/j.copbio.2016.10.010 Zelcbuch, 2016, Pyruvate formate-lyase enables efficient growth of Escherichia coli on acetate and formate, Biochemistry, 55, 2423, 10.1021/acs.biochem.6b00184 Satanowski, 2020, Awakening a latent carbon fixation cycle in Escherichia coli, Nat Commun, 10.1038/s41467-020-19564-5 He, 2020, An optimized methanol assimilation pathway relying on promiscuous formaldehyde-condensing aldolases in E. coli, Metab Eng, 60, 1, 10.1016/j.ymben.2020.03.002 Hernandez, 2017, Combining aldolases and transaminases for the synthesis of 2-Amino-4-hydroxybutanoic acid, ACS Catal, 7, 1707, 10.1021/acscatal.6b03181 D'Ari, 1998, Underground metabolism, Bioessays, 20, 181, 10.1002/(SICI)1521-1878(199802)20:2<181::AID-BIES10>3.0.CO;2-0 De Crécy-Lagard, 2018, Newly-discovered enzymes that function in metabolite damage-control, Curr Opin Chem Biol, 47, 101, 10.1016/j.cbpa.2018.09.014 Michael, 2017, Evolution of biosynthetic diversity, Biochem J, 474, 2277, 10.1042/BCJ20160823 Nam, 2012, Network context and selection in the evolution to enzyme specificity, Science, 337, 1101, 10.1126/science.1216861 Rosenberg, 2019, Harnessing underground metabolism for pathway development, Trends Biotechnol, 37, 29, 10.1016/j.tibtech.2018.08.001 Cotton, 2020, Underground isoleucine biosynthesis pathways in E. coli, Elife, 9, 1, 10.7554/eLife.54207 Pontrelli, 2018, Metabolic repair through emergence of new pathways in Escherichia coli, Nat Chem Biol, 14, 1005, 10.1038/s41589-018-0149-6 Kim, 2010, Three serendipitous pathways in E. coli can bypass a block in pyridoxal-5-phosphate synthesis, Mol Syst Biol, 6, 1, 10.1038/msb.2010.88 Eisenhut, 2008, The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants, Proc Natl Acad Sci U S A, 105, 17199, 10.1073/pnas.0807043105 Claassens, 2020, Phosphoglycolate salvage in a chemolithoautotroph using the Calvin cycle, Proc Natl Acad Sci U S A, 117, 22452, 10.1073/pnas.2012288117 Lee, 2019, Functional genomics of the rapidly replicating bacterium Vibrio natriegens by CRISPRi, Nat Microbiol, 4, 1105, 10.1038/s41564-019-0423-8 Donati, 2021, Multi-omics analysis of CRISPRi-knockdowns identifies mechanisms that buffer decreases of enzymes in E. coli metabolism, Cell Syst, 12, 56, 10.1016/j.cels.2020.10.011 Sauer, 2001, Evolutionary engineering of industrially important microbial phenotypes, Adv Biochem Eng Biotechnol, 73, 129 Antonovsky, 2016, Sugar synthesis from CO2 in Escherichia coli, Cell, 166, 115, 10.1016/j.cell.2016.05.064 Herz, 2017, The genetic basis for the adaptation of E. coli to sugar synthesis from CO2, Nat Commun, 8, 10.1038/s41467-017-01835-3 Barenholz, 2017, Design principles of autocatalytic cycles constrain enzyme kinetics and force low substrate saturation at flux branch points, Elife, 6, 1, 10.7554/eLife.20667 Chen, 2020, Converting Escherichia coli to a synthetic methylotroph growing solely on methanol, Cell, 182, 933, 10.1016/j.cell.2020.07.010 Gassler, 2020, The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2, Nat Biotechnol, 38, 210, 10.1038/s41587-019-0363-0 Bogorad, 2013, Synthetic non-oxidative glycolysis enables complete carbon conservation, Nature, 502, 693, 10.1038/nature12575 Lin, 2018, Construction and evolution of an Escherichia coli strain relying on nonoxidative glycolysis for sugar catabolism, Proc Natl Acad Sci U S A, 115, 3538, 10.1073/pnas.1802191115 Hindré, 2012, New insights into bacterial adaptation through in vivo and in silico experimental evolution, Nat Rev Microbiol, 10, 352, 10.1038/nrmicro2750 McCloskey, 2018, Evolution of gene knockout strains of E. coli reveal regulatory architectures governed by metabolism, Nat Commun, 9, 10.1038/s41467-018-06219-9 Sandberg, 2019, The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology, Metab Eng, 56, 1, 10.1016/j.ymben.2019.08.004