Synthetic biological approaches for RNA labelling and imaging: design principles and future opportunities

Current Opinion in Biotechnology - Tập 48 - Trang 153-158 - 2017
Steven Pauff1, Jamie M Withers1, Iain JW McKean1, Simon P Mackay2, Glenn A Burley1
1Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
2Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom

Tài liệu tham khảo

Serganov, 2007, Ribozymes, riboswitches and beyond: regulation of gene expression without proteins, Nat. Rev. Genet., 8, 776, 10.1038/nrg2172 He, 2004, Micrornas: small RNAs with a big role in gene regulation, Nat. Rev. Genet., 5, 522, 10.1038/nrg1379 Fedor, 2005, The catalytic diversity of RNAs, Nat. Rev. Mol. Cell Biol., 6, 399, 10.1038/nrm1647 Matlin, 2005, Understanding alternative splicing: towards a cellular code, Nat. Rev. Mol. Cell Biol., 6, 386, 10.1038/nrm1645 Rath, 2015, Genetically encoded tools for RNA imaging in living cells, Curr. Opin. Biotechnol., 31, 42, 10.1016/j.copbio.2014.07.012 Pitchiaya, 2014, Single molecule fluorescence approaches shed light on intracellular RNAs, Chem. Rev., 114, 3224, 10.1021/cr400496q Hövelmann, 2013, Brightness enhanced DNA fit-probes for wash-free RNA imaging in tissue, J. Am. Chem. Soc., 135, 19025, 10.1021/ja410674h Lavergne, 2016, Fret characterization of complex conformational changes in a large 165 ribosomal RNA fragment site-specifically labeled using unnatural base pairs, ACS Chem. Biol., 11, 1347, 10.1021/acschembio.5b00952 Chen, 2016, The expanding world of DNA and RNA, Curr. Opin. Chem. Biol., 34, 80, 10.1016/j.cbpa.2016.08.001 Seo, 2011, Site-specific labeling of DNA and RNA using an efficiently replicated and transcribed class of unnatural base pairs, J. Am. Chem. Soc., 133, 19878, 10.1021/ja207907d Someya, 2015, Site-specific labeling of RNA by combining genetic alphabet expansion transcription and copper-free click chemistry, Nucleic Acids Res., 43, 6665, 10.1093/nar/gkv638 You, 2015, Structure and mechanism of RNA mimics of green fluorescent protein, Ann Rev Biophys., 44, 187, 10.1146/annurev-biophys-060414-033954 You, 2015, Imaging metabolite dynamics in living cells using a spinach-based riboswitch, Proc. Natl. Acad. Sci. U. S. A., 112, E2756, 10.1073/pnas.1504354112 Biffi, 2014, Visualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cells, Nat. Chem., 6, 75, 10.1038/nchem.1805 Nelles, 2016, Programmable RNA tracking in live cells with CRISPR/Cas9, Cell, 165, 488, 10.1016/j.cell.2016.02.054 Liu, 2015, Synthesis and applications of RNAs with position-selective labelling and mosaic composition, Nature, 522, 368, 10.1038/nature14352 Malyshev, 2015, The expanded genetic alphabet, Angew. Chem. Int. Ed., 54, 11930, 10.1002/anie.201502890 Taylor, 2014, Towards applications of synthetic genetic polymers in diagnosis and therapy, Curr. Opin. Chem. Biol., 22, 79, 10.1016/j.cbpa.2014.09.022 Zhang, 2015, Evolution of functional six-nucleotide DNA, J. Am. Chem. Soc., 137, 6734, 10.1021/jacs.5b02251 Leal, 2015, Transcription, reverse transcription, and analysis of RNA containing artificial genetic components, ACS Synth. Biol., 4, 407, 10.1021/sb500268n Reichenbach, 2016, Structural basis of the mispairing of an artificially expanded genetic information system, Chem, 1, 946, 10.1016/j.chempr.2016.11.009 Kimoto, 2010, A new unnatural base pair system between fluorophore and quencher base analogues for nucleic acid-based imaging technology, J. Am. Chem. Soc., 132, 15418, 10.1021/ja1072383 Ishizuka, 2012, Site-specific functionalization of RNA molecules by an unnatural base pair transcription system via click chemistry, Chem. Commun., 48, 10835, 10.1039/c2cc36293g Dhami, 2014, Systematic exploration of a class of hydrophobic unnatural base pairs yields multiple new candidates for the expansion of the genetic alphabet, Nucleic Acids Res., 42, 10235, 10.1093/nar/gku715 Betz, 2013, Structural insights into DNA replication without hydrogen bonds, J. Am. Chem. Soc., 135, 18637, 10.1021/ja409609j Malyshev, 2014, A semi-synthetic organism with an expanded genetic alphabet, Nature, 509, 385, 10.1038/nature13314 Giepmans, 2006, Review—the fluorescent toolbox for assessing protein location and function, Science, 312, 217, 10.1126/science.1124618 Song, 2013, Imaging bacterial protein expression using genetically encoded RNA sensors, Nat. Methods, 10, 873, 10.1038/nmeth.2568 Paige, 2012, Fluorescence imaging of cellular metabolites with RNA, Science, 335, 1194, 10.1126/science.1218298 Paige, 2011, RNA mimics of green fluorescent protein, Science, 333, 642, 10.1126/science.1207339 Huang, 2014, A G-quadruplex-containing RNA activates fluorescence in a GFP-like fluorophore, Nat. Chem. Biol., 10, 686, 10.1038/nchembio.1561 Warner, 2014, Structural basis for activity of highly efficient RNA mimics of green fluorescent protein, Nat. Struct. Mol. Biol., 21, 658, 10.1038/nsmb.2865 Strack, 2013, A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat-containing RNA, Nat. Methods, 10, 1219, 10.1038/nmeth.2701 Filonov, 2014, Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution, J. Am. Chem. Soc., 136, 16299, 10.1021/ja508478x Autour, 2016, iSpinach: a fluorogenic RNA aptamer optimized for in vitro applications, Nucleic Acids Res., 44, 2491, 10.1093/nar/gkw083 Ketterer, 2015, Systematic reconstruction of binding and stability landscapes of the fluorogenic aptamer spinach, Nucleic Acids Res., 43, 9564, 10.1093/nar/gkv944 Guet, 2015, Combining spinach-tagged RNA and gene localization to image gene expression in live yeast, Nat. Commun., 19, 8882, 10.1038/ncomms9882 Höfer, 2013, Universal aptamer-based real-time monitoring of enzymatic RNA synthesis, J. Am. Chem. Soc., 135, 13692, 10.1021/ja407142f Nakayama, 2012, Nanomolar fluorescent detection of c-di-GMP using a modular aptamer strategy, Chem. Commun., 48, 9059, 10.1039/c2cc34379g Wang, 2016, Next-generation RNA-based fluorescent biosensors enable anaerobic detection of cyclic di-GMP, Nucleic Acids Res., 44, 10, 10.1093/nar/gkw580 Ketterer, 2016, Engineering and characterization of fluorogenic glycine riboswitches, Nucleic Acids Res., 44, 5983, 10.1093/nar/gkw465 Su, 2016, In vitro and in vivo enzyme activity screening via RNA-based fluorescent biosensors for S-adenosyl-l-homocysteine (SAH), J. Am. Chem. Soc., 138, 7040, 10.1021/jacs.6b01621 Dolgosheina, 2014, RNA mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking, ACS Chem. Biol., 9, 2412, 10.1021/cb500499x Jeng, 2016, Fluorophore ligand binding and complex stabilization of the RNA mango and RNA spinach aptamers, RNA, 22, 1884, 10.1261/rna.056226.116 Bertrand, 1998, Localization of ash1 mRNA particles in living yeast, Mol. Cell., 2, 437, 10.1016/S1097-2765(00)80143-4 Wang, 2002, Modular recognition of RNA by a human pumilio-homology domain, Cell, 110, 501, 10.1016/S0092-8674(02)00873-5 Jinek, 2012, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 337, 816, 10.1126/science.1225829 Jiang, 2013, RNA-guided editing of bacterial genomes using CRISPR-Cas systems, Nat. Biotechnol., 31, 233, 10.1038/nbt.2508 Zhang, 2017, A semisynthetic organism engineered for the stable expansion of the genetic alphabet, Proc. Natl. Acad. Sci. U. S. A., 114, 1317, 10.1073/pnas.1616443114 Betz, 2012, KlenTaq polymerase replicates unnatural base pairs by inducing a Watson–Crick geometry, Nat. Chem. Biol., 8, 612, 10.1038/nchembio.966