Synthesizing nanostructured crack-free thick films of Fe-doped lead zirconate titanate by sol–gel dip coating method

Journal of Sol-Gel Science and Technology - Tập 81 - Trang 814-823 - 2016
Amid Shakeri1, Hossein Abdizadeh1,2, Mohammad Reza Golobostanfard1
1School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
2Center of Excellence for High Performance Material, University of Tehran, Tehran, Iran

Tóm tắt

Lead zirconate titanate is one of the most well-known ferroelectric oxides and has been widely used in nano/micro-electromechanical systems and piezoelectric industries. Doping the lead zirconate titanate thick films by Fe3+ as an acceptor dopant leads to hard lead zirconate titanate piezoelectrics for specific applications including high frequency transducers. In this article, Fe-doped lead zirconate titanate thick films with the thickness of 27 µm are synthesized by using a modified acetic acid/alcoholic based sol–gel method and applying diethanolamine as a complexing agent. Crystallographic measurements are performed considering lattice constants and lattice distortion of the films by means of X-ray diffraction. Pure perovskite phase is obtained by adding the dopant up to 5 at. % Fe. The tetragonal lattice distortion and lattice parameters decrease by adding Fe and reach to its minimum level of c t  = 4.024 Å and a t  = 3.966 Å at 3 at. % Fe. The surface morphology and grain size are surveyed using field emission scanning electron microscopy, which shows the reduction in grain size by adding the dopant. Polarization-voltage loops and dielectric constants of the films are calculated by electrical measurement and illustrate reduction in the polarization by increasing Fe dopant. The highest value of coercive voltage is achieved at 3 at. % Fe. Moreover, the lowest dielectric constant of 318 is obtained at 5 at. % Fe. Nanostructured crack-free Fe-doped PZT thick films are successfully prepared by using modified sol–gel route with different Fe dopant percentages (a) surface morphology of PF(3 %)ZT, (b) cross section of PZT thick film.

Tài liệu tham khảo

Chidambaram N, Balma D, Nigon R, Mazzalai A, Matloub R, Sandu CS, Muralt P (2015) J Micromech Microeng 25:045016 Wallace M, Johnson-Wilke RL, Esteves G, Fancher CM, Wilke RHT, Jones JL, Trolier-McKinstry S (2015) J Appl Phys 117:054103 Dragan D (1998) Rep Prog Phys 61:1267 Shakeri A, Abdizadeh H, Golobostanfard MR (2014) Adv Mat Res 829:698–702 Noheda B, Gonzalo JA, Caballero AC, Moure C, Cox DE, Shirane G (2000) Ferroelectrics 237:237–244 Wang W, Han J, Zhi L, Xu W, Liu Y, Zou H (2015) IET Micro Nano Lett 10:213–216 Ahmed M, Butler DP (2015) Infrared Phys Technol 71:1–9 Seregin DS, Vorotilov KA, Sigov AS, Zubkova EN, Abdullaev DA, Kotova NM, Vishnevskiy AS (2015) Phys Solid State 57:499–502 Poznyak SK, Kulak AI (2014) J Appl Spectros 81:866–872 Hoshyarmanesh H, Nehzat N, Salehi M, Ghodsi M (2015) J Mech Sci Technol 29:715–721 Xu R, Lei A, Dahl-Petersen C, Hansen K, Guizzetti M, Birkelund K, Thomsen EV, Hansen O (2012) Sens Actuators A 188:383–388 Baba S, Akedo J (2009) Appl Surf Sci 255:9791–9795 Bose A, Maity T, Bysakh S, Seal A, Sen S (2010) Appl Surf Sci 256:6205–6212 De-Qing Z, Shao-Jun W, Hong-Shan S, Xiu-Li W, Mao-Sheng C (2007) J Sol-Gel Sci Technol 41:157–161 Shakeri A, Abdizadeh H, Golobostanfard MR (2012) Adv Mat Res 576:326–329 Yasseri M, Abdizadeh H, Shakeri A, Golobostanfard MR (2014) Adv Mat Res 829:727–731 Shoghi A, Shakeri A, Abdizadeh H, Golobostanfard MR (2015) Procedia Mater Sci 11:386–390 Wei H, Chen Y (2015) Ceram Int 41:6158–6163 Zhao H, Zhang K, Xu L, Sun F, Chen X, Li KK, Zhang J (2014) J Appl Phys 115:073101 Majumder SB, Roy B, Katiyar RS, Krupanidhi SB (2001) Appl Phys Lett 79:239–241 Han H, Song X, Zhong J, Kotru S, Padmini P, Pandey RK (2004) Appl Phys Lett 85:5310–5312 Yang YS, Lee SJ, Kim SH, Chae BG, Jang MS (1998) J Appl Phys 84:5005–5011 Shakeri A, Abdizadeh H, Golobostanfard MR (2016) J Mater Sci Mater Electron 27:5654–5664 Heywang W, Lubitz K, Wersing W (2008) Piezoelectricity: Evolution and future of a technology. Springer, Berlin Heidelberg Somiya S, Aldinger F, Claussen N, Spriggs RM, Uchino K, Koumoto K, Kaneno M (2003) Handbook of advanced ceramic volume II: Processing and their applicatoin. Elsevier Academic Press, Oxford Cakare-Samardzija L, Malic B, Kosec M (2005) Mater Tehnol 39:95–98 Bai W, Meng XJ, Lin T, Tian L, Jing CB, Liu WJ, Ma JH, Sun JL, Chu JH (2009) J Appl Phys 106:124908–124914 Zhou Q, Lau S, Wu D, Kirk Shung K (2011) Prog Mater Sci 56:139–174 Lam KH, Ji HF, Zheng F, Ren W, Zhou Q, Shung KK (2013) Ultrasonics 53:1033–1038 Shakeri A, Abdizadeh H, Golobostanfard MR (2014) Appl Surf Sci 314:711–719 Schultz M, Burckhardt W, Barth S (1999) J Mater Sci 34:2217–2227 Sanchez C, Livage J, Henry M, Babonneau F (1988) J Non-Cryst Solids 100:65–76 Seisenbaeva GA, Kessler VG (2014) Nanoscale 6:6229–6244 Klissurska RD, Brooks KG, Reaney IM, Pawlaczyk C, Kosec M, Setter N (1995) J Am Ceram Soc 78:1513–1520 Long W, Tien-Shou W, Chung-Chuang W, Hsi-Chuan L (1983) J Phys C Solid State Phys 16:2823 Ahmed MA, Rady KE, Shams MS (2015) J Alloys Compd 622:269–275 Cohen RE (1992) Nature 358:136–138 Richter J, Holtappels P, Graule T, Nakamura T, Gauckler L (2009) Monatsh Chem 140:985–999 Ganesh R, Goo E (1997) J Am Ceram Soc 80:653–662 Shturman I, Shter GE, Etin A, Grader GS (2009) Thin Solid Films 517:2767–2774 Brinker CJ, Scherer GW (1990) Sol-gel science: The physics and chemistry of sol-gel processing. Academic Press, Inc, San Diego Lee WI, Lee Jk (1995) Mater Res Bull 30:1185–1191 Sik Kim W, Ha SM, Park HH, Eun Kim C (1999) Thin Solid Films 355–356:531–535