Synthesis, structural, optical and experimental gamma-ray shielding properties of molybdenum-trioxide reinforced CRT glasses

Recep Kurtuluş1, Esra Kavaz2, Taner Kavas1, Ghada ALMisned3, U. Perişanoğlu2, H.O. Tekın4
1Faculty of Engineering, Department of Materials Science and Engineering, Afyon Kocatepe University, Afyonkarahisar, Turkey
2Faculty of Science, Department of Physics, Ataturk University, Erzurum, 25240, Turkey
3Department of physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
4Medical Diagnostic Imaging Department, College of Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hole, G., Hole, A.S.: Recycling as the way to greener production: A mini review. J. Clean. Prod. 212, 910–915 (2019). https://doi.org/10.1016/j.jclepro.2018.12.080

Testa, M., Malandrino, O., Sessa, M.R., Supino, S., Sica, D.: Long-term sustainability from the perspective of cullet recycling in the container glass industry: Evidence from Italy. Sustain. 9, 1752 (2017). https://doi.org/10.3390/su9101752

Isa, H.: The need for waste management in the glass industries: A review. Sci. Res. Essays. 3, 276–279 (2008)

Chindris, L., Arad, V., Arad, S., Radermacher, L., Radeanu, C.: Valorization of mining waste in the construction industry general considerations. Int. Multidiscip. Sci. GeoConference. Surv. Geol. Min. Ecol. Manag. SGEM. 17, 309–316 (2017). https://doi.org/10.5593/sgem2017/41/S18.040

Stochero, N.P., de Souza Chami, J.O.R., Souza, M.T. et al.: Green glass foams from wastes designed for thermal insulation. Waste. Biomass. Valor. 12, 1609–1620 (2021). https://doi.org/10.1007/s12649-020-01120-3

Flood, M., Fennessy, L., Lockrey, S., Avendano, A., Glover, J., Kandare, E., Bhat, T.: Glass Fines: A review of cleaning and up-cycling possibilities. J. Clean. Prod. 267, 121875 (2020). https://doi.org/10.1016/j.jclepro.2020.121875

Karaahmet, O., Cicek, B.: Waste recycling of cathode ray tube glass through industrial production of transparent ceramic frits. J. Air Waste Manag. Assoc. 69, 1258–1266 (2019). https://doi.org/10.1080/10962247.2019.1654037

Varshneya, A.K., Mauro, J.C.: Fundamentals of inorganic glass making. Chap. 2. 19–35 (2019). https://doi.org/10.1016/b978-0-12-816225-5.00022-5

El-Mallawany, R.: Some physical properties of tellurite glasses. In: El-Mallawany, R. (ed) Tellurite Glass Smart Materials. Springer,  Cham. pp. 1–16 (2018). https://doi.org/10.1007/978-3-319-76568-6_1

Mohajerani, A., Vajna, J., Cheung, T.H.H., Kurmus, H., Arulrajah, A., Horpibulsuk, S.: Practical recycling applications of crushed waste glass in construction materials: A review. Constr. Build. Mater. 156, 443–467 (2017). https://doi.org/10.1016/j.conbuildmat.2017.09.005

Iniaghe, P.O., Adie, G.U.: Management practices for end-of-life cathode ray tube glass: Review of advances in recycling and best available technologies. Waste Manag. Res. 33, 947–961 (2015). https://doi.org/10.1177/0734242X15604212

Xu, Q., Li, G., He, W., Huang, J., Shi, X.: Cathode ray tube (CRT) recycling: Current capabilities in China and research progress. Waste Manag. 32, 1566–1574 (2012). https://doi.org/10.1016/j.wasman.2012.03.009

Ciftci, M., Cicek, B.: E-waste: A Review of CRT (Cathode Ray Tube) Recycling. Res. Rev. J. Mater. Sci. 05, 1–17 (2017). https://doi.org/10.4172/2321-6212.1000170

Yu-Gong, Tian, X.M, Wu, Y.F., Zhe-Tan., Lei-Lv.: Recent development of recycling lead from scrap CRTs: A technological review. Waste. Manag. 57, 176–186 (2016). https://doi.org/10.1016/j.wasman.2015.09.004

Malidarre, R.B., Akkurt, I.: A comprehensive study on the charged-uncharged particle shielding features of (70–x) CRT–30K2O–xBaO glass system. J. Aust. Ceram. Soc. 58(3), 841–850 (2022). https://doi.org/10.1007/S41779-022-00733-2/FIGURES/17

Basha, B., et al.: Synthesis of Bi2O3 doping powder from CRT-screen waste glass: Physical, structural, and radiation attenuation properties. Radiat. Phys. Chem. 214, 111279 (2024). https://doi.org/10.1016/J.RADPHYSCHEM.2023.111279

Sayyed, M.I., Mhareb, M.H.A., Kaky, K.M.: Characterization of Mechanical and Radiation Shielding Features of Borosilicate Glasses Doped with MoO3. SILICON (2023). https://doi.org/10.1007/S12633-023-02801-Z

Kaky, K.M., Sayyed, M.I., Mhareb, M.H.A., Abbas, H.H., Baki, S.O.: Physical, structural, mechanical, and various radiation shielding properties of TeO2-GeO2-ZnO-Al2O3-Li2O-M (M= WO3, MoO3, PbO, and CuO) glasses. Opt. Mater. 145, 114370 (2023). https://doi.org/10.1016/J.OPTMAT.2023.114370

Aloraini, D.A., Ashour, A., Shaaban, K.S.: Effect of Various Na2O-MoO3 Concentrations on the Thermal, Mechanical, and Radiation-resisting Attributes of Zinc-borosilicate Glasses. SILICON (2023). https://doi.org/10.1007/S12633-023-02804-W

El-Rehim, A.F.A., Zahran, H.Y., Yahia, I.S., Ali, A.M., Shaaban, K.S.: Physical, Radiation Shielding and Crystallization Properties of Na2O-Bi2O3- MoO3-B2O3- SiO2-Fe2O3 Glasses. SILICON (2020). https://doi.org/10.1007/s12633-020-00827-1

Tekin, H.O., Abouhaswa, A.S., Kilicoglu, O., Issa, S.A.M., Akkurt, I., Rammah, Y.S.: Fabrication, physical characteristic, and gamma-photon attenuation parameters of newly developed molybdenum reinforced bismuth borate glasses. Phys. Scr. 95, 115703 (2020). https://doi.org/10.1088/1402-4896/abbf6e

ALMisned, G., Rammah, Y.S., Zakaly, H.M.H. et al.: Sodium metaphosphate-tungsten trioxide glasses: a characterization study on gamma-ray shielding properties and transmission factors (TFs). J. Aust. Ceram. Soc. (2023). https://doi.org/10.1007/s41779-023-00980-x

Alan, H.Y., et al.: Non-decreasing monotonic effects of cerium and gadolinium on tellurite glasses toward enhanced heavy-charged particle stopping: alpha-proton particles as major a part of cosmic radiation. J. Aust. Ceram. Soc. (2023). https://doi.org/10.1007/S41779-023-00984-7

Almisned, G., et al.: Tailoring a correlation between fracture resistance improvement, elastic moduli, mechanical and nuclear radiation shielding properties for sodium-borate glasses through Gallium(III) oxide incorporation. J. Market. Res. 27, 7582–7592 (2023). https://doi.org/10.1016/J.JMRT.2023.11.195

Perişanoğlu, U., Kavaz, E., Tekin, H.O., Armoosh, S.R., Ekinci, N., Oltulu, M.: Comparison of gamma and neutron shielding competences of Fe–Cu- and brass-added Portland cement pastes: an experimental and Monte Carlo study. Appl. Phys. A Mater. Sci. Process. (2020). https://doi.org/10.1007/s00339-020-03648-6

Kara, U., Susoy, G., Issa, S.A.M., Elshami, W., Yorgun, N.Y., Abuzaid, M.M., Kavaz, E., Tekin, H.O.: Iron (III) oxide doped lithium borate glasses: structural and charged particles/photon shielding properties. J. Non Cryst. Solids (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120281

Kulesza, J.A., Adams, T.R., Armstrong, J.C., Bolding, S.R., Brown, F.B., Bull, J.S., Burke, T.P., Clark, A.R., Forster III, R.A., Giron, J.F., Grieve, T.S., Josey, C.J., Martz, R.L., McKinney, G.W., Pearson, E.J., Rising, M.E., Solomon Jr., C.J., Swaminarayan, S., Trahan, T.J., Wilson, S.C., Zukaitis, A.J.: MCNP® code version 6.3.0 theory & user manual. Los Alamos National Laboratory Tech. Rep. LA-UR-22-30006, Rev. 1. Los Alamos, NM, USA (2022)

ALMisned, G., et al.: Comparative analysis on application conditions of indium (III) oxide-reinforced glasses in nuclear waste management and source transportation: A Monte Carlo simulation study. Heliyon. 9(3), e14274 (2023). https://doi.org/10.1016/J.HELIYON.2023.E14274

ALMisned, G., Rabaa, E., Sen Baykal, D., Ilik, E., Kilic, G., Zakaly, H.M.H., Ene, A., Tekin, H.O.: Translocation of tungsten(vi) oxide/gadolinium(iii) fluoride in tellurite glasses towards improvement of gamma-ray attenuation features in high-density glass shields. Open. Chem. 21(1), 20220289 (2023). https://doi.org/10.1515/chem-2022-0289

Perişanoğlu, U., Tekin, H.O., Abouhaswa, A.S., Kavaz, E.: Structural and nuclear shielding qualities of B2O3–PbO–Li2O glass system with different Ag2O substitution ratios. Radiat. Phys. Chem. (2021). https://doi.org/10.1016/j.radphyschem.2020.109262

Sayyed, M.I., Çelikbilek Ersundu, M., Ersundu, A.E., Lakshminarayana, G., Kostka, P.: Investigation of radiation shielding properties for MeO-PbCl2-TeO2 (MeO = Bi2O3, MoO3, Sb2O3, WO3, ZnO) glasses. Radiat. Phys. Chem. 144, 419–425 (2018). https://doi.org/10.1016/j.radphyschem.2017.10.005

Issa, S.A.M., Ali, A.M., Susoy, G., Tekin, H.O., Saddeek, Y.B., Elsaman, R., Somaily, H.H., Algarni, H.: Mechanical, physical and gamma ray shielding properties of xPbO-(50–x) MoO3–50V2O5 (25 ≤ x ≤ 45 mol %) glass system. Ceram. Int. 46, 20251–20263 (2020). https://doi.org/10.1016/j.ceramint.2020.05.107

Lai, Y.M., Liang, X.F., Yang, S.Y., Wang, J.X., Cao, L.H., Dai, B.: Raman and FTIR spectra of iron phosphate glasses containing cerium. J. Mol. Struct. 992, 84–88 (2011). https://doi.org/10.1016/j.molstruc.2011.02.049

Singh, K.J., Singh, N., Kaundal, R.S., Singh, K.: Gamma-ray shielding and structural properties of PbO-SiO2 glasses. Nucl. Instrum. Method. Phys. Res. Sect. B. Beam0 Interact. Mater. Atoms. 266, 944–948 (2008). https://doi.org/10.1016/j.nimb.2008.02.004

Kaur, R., Singh, S., Pandey, O.P.: FTIR structural investigation of gamma irradiated BaO–Na2O–B2O3–SiO2 glasses. Phys. B Condens. Matter. 407(24), 4765–4769 (2012). https://doi.org/10.1016/j.physb.2012.08.031

Kaur, P., Singh, K.J., Thakur, S., Kurudirek, M.: Investigation of a competent non-toxic Bi2O3−Li2O−CeO2−MoO3−B2O3 glass system for nuclear radiation security applications. J. Non-Cryst. Solids. 545, 120235 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120235

Urbach, F.: The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids. Phys. Rev. 92, 1324–1324 (1953). https://doi.org/10.1103/PhysRev.92.1324

Tekin, H.O., Kassab, L.R.P., Issa, S.A.M., Martins, M.M., Bontempo, L., da Silva Mattos, G.R.: Newly developed BGO glasses: Synthesis, optical and nuclear radiation shielding properties. Ceram. Int. 46, 11861–11873 (2020). https://doi.org/10.1016/j.ceramint.2020.01.221

Dimitrov, V., Sakka, S.: Electronic oxide polarizability and optical basicity of simple oxides. I. J. Appl. Phys. 79, 1736–1740 (1996). https://doi.org/10.1063/1.360962

Hila, F.C., Asuncion-Astronomo, A., Dingle, C.A.M., Jecong, J.F.M., Javier-Hila, A.M.V., Gili, M.B.Z., Balderas, C.V., Lopez, G.E.P., Guillermo, N.R.D., Amorsolo, A.V.: EpiXS: A Windows-based program for photon attenuation, dosimetry and shielding based on EPICS2017 (ENDF/B-VIII) and EPDL97 (ENDF/B-VI.8). Radiat. Phys. Chem. 182, 109331 (2021). https://doi.org/10.1016/j.radphyschem.2020.109331

Kurtuluş, R., Buriahi, M.S., Issa, S.A.M., Tekin, H.O., Kavas, T., Kavaz, E.: Physical, structural, mechanical and radiation shielding features of waste pharmaceutical glasses doped with Bi2O3. Optik. 261, 169108 (2022). https://doi.org/10.1016/j.ijleo.2022.169108

http://www.schott.com/advanced_optics/english/products/opticalmaterials/specialmaterials/radiation-shielding-glasses/index.html

Bashter, I.I.: Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24, 1389–1401 (1997). https://doi.org/10.1016/S0306-4549(97)00003-0