Tổng hợp, phổ, nhiệt, cấu trúc tinh thể, phân tích Hirschfeld của phức hợp [bis(triamine)Cadimium(II)][Cadimum(IV)tetra-bromide] và quá trình nhiệt phân thành hạt nano CdO

Springer Science and Business Media LLC - Tập 10 - Trang 1-11 - 2016
Ismail Warad1, Fuad Al-Rimawi2, Assem Barakat3,4, Saida Affouneh5, Naveen Shivalingegowda6, Neartur Krishnappagowda Lokanath7, Ibrahim M. Abu-Reidah1
1Department of Chemistry, Science College, An-Najah National University, Nablus, Palestine
2Chemistry Department, Faculty of Science and Technology, Al-Quds University, Al-Quds, Palestine
3Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
4Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
5Elearning Center, An-Najah National University, Nablus, Palestine
6Institution of Excellence, VijnanaBhavan, University of Mysore, Mysore, India
7Department of Studies in Physics, University of Mysore, Mysore, India

Tóm tắt

Hóa học phối trí của cadmium(II) với các phối tử diamine là mối quan tâm đặc biệt. Cấu trúc phổ biến nhất xung quanh tâm cadmium(II) trong các phức hợp là tứ diện, điều này là do tuân thủ quy tắc bát phân. Tuy nhiên, các phức hợp có tọa độ năm và sáu cũng được biết đến. Hiện nay, nhiều phức hợp cadmium(II) với các phối tử kẹp chéo được tổng hợp do đặc tính cấu trúc hoặc ứng dụng của chúng. Hoạt tính kháng khuẩn và ái lực liên kết DNA của lớp phức hợp cadmium này đã thu hút sự quan tâm đáng kể. Các phức hợp cadmium(II) ở dạng dicati với công thức chung [Cd(dien)2]CdBr4 phức 1 (dien = diethylenetriamine) và [Cd(dipn)2]CdBr4 phức 2 (dipn = diproylenetriamine) đã được điều chế và làm rõ cấu trúc hóa học của chúng bằng phân tích nguyên tố, UV-Vis, IR, TG và NMR, ngoài ra cấu trúc phức 1 được giải mã bằng nghiên cứu nhiễu xạ tia X. Cation Cd(II) nằm trong hình dạng gần như bát diện biến dạng một chút trong khi anion Cd(IV) nằm trong hình dạng tứ diện. Sự ổn định cao của phức hợp tổng hợp được xác nhận thông qua TG. Nhiệt phân của phức hợp 1 tiết lộ sự hình thành của hạt nano CdO cubic tinh khiết được suy ra từ phân tích phổ. Kích thước trung bình của hạt nano CdO được tìm thấy là khoảng ~ 60 nm. Hai phức hợp Cd(II) mới với công thức chung [Cd(N3)2]CdBr4 đã được tạo sẵn. Cấu trúc của [Cd(dien)2]CdBr4 đã được xác nhận bằng nhiễu xạ tia X. Phân tích nhiệt, điện và phổ cũng đã được điều tra trong nghiên cứu này. Quá trình nhiệt phân trực tiếp của các phức hợp này hình thành hạt nano hình khối CdO đều đặn với kích thước hạt trung bình ~ 60 nm.

Từ khóa

#Cadmium(II) #phức hợp #phối tử #hóa học phối trí #hoạt tính kháng khuẩn #ái lực liên kết DNA #hình khối #hạt nano CdO #nhiệt phân #cấu trúc tinh thể

Tài liệu tham khảo

Mitzi DB (2001) Templating and structural engineering in organic–inorganic perovskites. J Chem Soc Dalton Trans 1:1–12 Martınez-Manez R, Sancenon F, Biyikal M, Hecht M, Rurack K (2011) Mimicking tricks from nature with sensory organic–inorganic hybrid materials. J Mater Chem 21:12588–12604 Rakibuddin M, Gazi S, Ananthakrishnan R (2015) Iron (II) phenanthroline-resin hybrid as a visible light-driven heterogeneous catalyst for green oxidative degradation of organic dye. Catal Commun 58:53–58 Schoch TK, Hubbard JL, Zoch CR, Yi GB, Sørlie M (1996) Synthesis and structure of the ruthenium (II) complexes [(η-C5Me5)Ru(NO)(bipy)]2+ and [(η-C5Me5)Ru(NO)(dppz)]2+. DNA cleavage by an organometallic dppz Complex (bipy = 2, 2′-bipyridine; dppz = dipyrido [3, 2-a: 2′, 3′-c] phenazine). Inorg Chem 35:4383–4390 Kelland LR (2005) Overcoming the immortality of tumour cells by telomere and telomerase based cancer therapeutics–current status and future prospects. Eur J Cancer 41:971–979 Song YM, Lu XL, Yang ML, Zheng XR (2005) Study on the interaction of platinum(IV), gold(III) and silver(I) ions with DNA. Transit Metal Chem 30:499–502 Zhang QL, Liu JG, Chao H, Xue GQ, Ji LN (2001) DNA-binding and photocleavage studies of cobalt(III) polypyridyl complexes:[Co(phen)2IP]3+ and [Co(phen)2PIP]3+. J Inorg Biochem 83:49–55 Searle GH, House DA (1987) Lichens and fungi. XVIII. Extractives from Pseudocyphellaria rubella. Aust J Chem 40:361–372 Cannas M, Marongiu G, Saba G (1980) Structures of the complexes of CdCl2 with the aliphatic triaminesbis(2-aminoethyl)amine, bis(3-aminopropyl)amine, and 2-aminoethyl-(3-aminopropyl) amine: influence of aliphatic chain length on molecular association. J Chem Soc Dalton Trans 11:2090–2094 Ishihara H, Dou SQ, Horiuchi K, Krishnan VG, Paulus H, Fuess H, Weiss A (1996) Isolated versus condensed anion structure: the influence of the cation size and hydrogen bond on structure and phase transition in MX42− complex salts. 2,2-Dimethyl-1,3-propanediammonium tetrabromocadmate(II) monohydrate, DimethylammoniumTetrabromozincate(II), and DimethylammoniumTetrabromocadmate(II). Z Naturforsch 51a:1027–1036 Ishihara H, Horiuchi K, Dou SQ, Gesing TM, Buhl JC, Paulus H, Fuess H (1998) Isolated versus condensed anion structure IV: an NQR study and x-ray structure analysis of [H3N(CH2)3NH3]CdI4˖2H2O, [H3CNH2(CH2)3NH3]CdBr4, [(CH3)4N]2CdBr4, and [(CH3)3S]2CdBr4. Z Naturforsch 53a:717–724 Ishihara H, Krishnan VG, Dou SQ, Weiss A (1994) Bromine NQR and crystal structures of TetraaniliniumDecabromotricadmate and 4-methylpyridinium tribromocadmate. Z Naturforsch 49a:213–222 Ishihara H, Krishnan K, Dou SQ, Gesing TM, Buhl JC, Paulus H, Svoboda I, Fuess H (1999) Isolated versus condensed anion structure V: x-ray structure analysis and 81Br NQR of t-butylammoniumtribromocadmate(II)-1/2 water, i-propylammoniumtribromocadmate(II), and tris-trimethylammoniumheptabromodicadmate(II). Z Naturforsch 54a:628–636 Ishihara H, Horiuchi K, Krishnan VG, Svoboda I, Fuess H (2000) Isolated versus condensed anion structure VI: x-ray structure analysis and 81Br NQR of GuanidiniumPentabromodicadmate(II), [Cd(NH2)3]Cd2Br5, tris-HydraziniumPentabromocadmate(II), [H2NNH3]3CdBr5, and bis-HydraziniumTetrabromocadmate(II)-tetra hydrate, [H2NNH3]2CdBr4-4H2O. Z Naturforsch 55a:390–396 Ishihara H, Dou SQ, Horiuchi K, Krishnan VG, Paulus H, Fuess H, Weiss A (1996) Isolated versus condensed anion structure II; the influence of the cations (1,3-propanediammonium, 1,4-phenylendiammonium, and n-propylammonium) on structures and phase transitions of CdBr 2−4 salts A 79,81Br NQR and x-ray structure analysis. Z Naturforsch 51a:1216–1228 Hines CC, Reichert WM, Griffin ST, Bond AH, Snowwhite PE, Rogers RD (2006) Exploring control of cadmium halide coordination polymers via control of cadmium (II) coordination sites utilizing short multidentate ligands. J Mol Struct 796(1):76–85 He Y, Cai C (2011) Polymer-supported macrocyclic Schiff base palladium complex: an efficient and reusable catalyst for Suzuki cross-coupling reaction under ambient condition. Cat Commun 12(7):678–683 Seth KS (2016) Tuning the formation of MOFs by pH influence: x-ray structural variations and hirshfeld surface analyses of 2-amino-5-nitropyridine with cadmium chloride. CrystEngComm 15:1772–1781 Seth KS, Sarkar D, Kar T (2011) Use of π–π forces to steer the assembly of chromone derivatives into hydrogen bonded supramolecular layers: crystal structures and hirshfeld surface analyses. CrystEngComm 13:4528–4535 Seth KS (2014) Discrete cubic water cluster: an unusual building block of 3D supramolecular network. Inorg Chem Commun 43:60–63 Seth KS (2014) Exploration of supramolecular layer and bi-layer architecture in M(II)–PPP complexes: structural elucidation and hirshfeld surface analysis [PPP = 4-(3-Phenylpropyl)pyridine, M = Cu(II), Ni(II)]. J Mol Struct 1070:65–74 Seth KS, Saha I, Estarellas C, Frontera A, Kar T, Mukhopadhyay S (2011) Supramolecular self-assembly of M-IDA complexes involving lone-Pair···π interactions: crystal structures, hirshfeld surface analysis, and DFT calculations [H2IDA = iminodiacetic acid, M = Cu(II), Ni(II)]. Cryst Growth Des 11:3250–3265 Warad I, Khan AA, Azam M, Al-Resayes SI, Haddad SF (2014) Design and structural studies of diimine/CdX2 (X = Cl, I) complexes based on 2, 2-dimethyl-1, 3-diaminopropane ligand. J Mol Struct 1062:167–173 Warad I, Azam M, Al-Resayes SI, Khan MS, Ahmad P, Al-Nuri M, Jodeh Sh, Husein A, Haddad SF, Hammouti B, Al-Noaimi M (2014) Structural studies on Cd(II) complexes incorporating di-2-pyridyl ligand and the X-ray crystal structure of the chloroform solvated DPMNPH/CdI2 complex. Inorg Chem Commun 43:155–161 Warad I, Al-Ali M, Hammouti B, Hadda TB, Shareiah R, Rzaigui M (2013) Novel di-μ-chloro-bis [chloro (4, 7-dimethyl-1,10-phenanthroline) cadmium(II)] dimer complex: synthesis, spectral, thermal, and crystal structure studies. Res Chem Intermed 39:2451–2461 Barakat A, Al-Noaimi M, Suleiman M, Aldwayyan AS, Hammouti B, Hadda TB, Haddad SF, Boshaala A, Warad I (2013) One step synthesis of NiO nanoparticles via solid-state thermal decomposition at low-temperature of novel aqua (2, 9-dimethyl-1, 10-phenanthroline) NiCl2 complex. Int J Mol Sci 14:23941–23954 Aldwayyan A, Al-Jekhedab F, Al-Noaimi M, Hammouti B, Hadda TB, Suleiman M, Warad I (2013) Synthesis and characterization of CdO nanoparticles starting from organometalic dmphen-CdI2 complex. Int J Electrochem Sci 8:10506–10514 Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, Van de Streek J, Wood PA (2008) Mercury CSD 2.0– new features for the visualization and investigation of crystal structures. J Appl Cryst 41:466–470 Cremer DT, Pople JA (1975) General definition of ring puckering coordinates. J Am Chem Soc 97:1354–1358 Saghatforoush L, Aminkhani A, Ershad S, Karimnezhad GH, Ghammamy SH, Kabiri R (2008) Preparation of zinc (II) and cadmium (II) complexes of the tetradentate schiff base ligand 2-((E)-(2-(2-(pyridine-2-yl)-ethylthio)ethylimino)methyl)-4-bromophenol (PytBrsalH). Molecules 13:804–811 Majumder A, Rosair GM, Mallick A, Chattopadhyay N, Mitra S (2006) Synthesis, structures and fluorescence of nickel, zinc and cadmium complexes with the N, N, O-tridentate Schiff base N-2-pyridylmethylidene-2-hydroxy-phenylamine. Polyhedron 25:1753–1762 Warad I, Abdoh M, Shivalingegowda N, Lokanath NK, Salghi R, Al-Nuri M, Jodeh Sh, Radi S, Hammouti B (2015) Synthesis, spectral, electrochemical, crystal structure studies of two novel di-μ-halo-bis[halo (2, 9-dimethyl-4, 7-diphenyl-1, 10-phenanthroline) cadmium(II)] dimer complexes and their thermolysis to nanometal oxides. J Mol Struct 1099:323–329 Ye XR, Daraio C, Wang C, Talbot JB (2006) Room temperature solvent-free. Synthesis of monodisperse magnetite nanocrystals. J Nanosci Nanotechnol 6:852–856 Dong W, Zhu CS (2003) Optical properties of surface-modified CdO nanoparticles. Opt Mater 22(3):227–233 Klug HP, Alexander LE (1954) X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley, New York Patel RN, Singh N, Shukla KK, Niclós-Gutiérrez J, Castineiras A, Vaidyanathan VG, Nair BU (2005) Characterization and biological activities of two copper(II) complexes with diethylenetriamine and 2,2-bipyridine or 1,10-phenanthroline as ligands. Spectrochim Acta Part A 62:261–268 Spackman MA, Jayatilaka D (2009) Design and understanding of solid-state and crystalline materials. Cryst Eng Commun 11:19–32 Spackman MA, McKinnon JJ (2002) Fingerprinting intermolecular interactions in molecular crystals. Cryst Eng Commun 4:378–392 Wolff SK, Grimwood DJ, McKinnon JJ, Jayatilaka D, Spackman MA (2007) Crystal explorer 2.1. University of Western Australia, Perth Bruker (2009) APEX2, SAINT and SADABS. Bruker AXS Inc, Madison Sheldrick GM (2008) A short history of SHELX. Acta Cryst A64:112–122 Spek AL (2009) Structure validation in chemical crystallography. Acta Cryst D65:148–155