Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tổng hợp zeolit từ tro núi lửa (Tajogaite, Tây Ban Nha) để xử lý nước bị ô nhiễm bởi fluoride
Tóm tắt
Trong sự kiện phun trào của Tajogaite (2021) tại La Palma, Quần đảo Canary, một lượng lớn tro núi lửa đã tích tụ, ảnh hưởng đến môi trường địa phương và các khu vực đô thị. Trong nghiên cứu này, tro núi lửa được lấy mẫu từ các khu vực đô thị (được phân loại là chất thải đô thị (20 03 03) theo Danh mục Chất thải Châu Âu) đã được chuyển đổi thành zeolit thông qua tổng hợp thủy nhiệt ở nhiệt độ 100 °C với giai đoạn nóng chảy kiềm trước đó ở 550 °C với nước cất. Trong quá trình này, các pha zeolit mới chủ yếu là loại X và sodalite đã được xác định bằng phương pháp XRD sau 2 giờ ủ. Những zeolit này, theo thời gian ủ, cho thấy các quá trình cạnh tranh trong đó sự chuyển đổi thành sodalite phát triển sau 24 giờ như là pha chiếm ưu thế. Vật liệu zeolit tổng hợp cho thấy hàm lượng cao của các tạp chất Fe2O3 (13.70 wt%), Na2O (12.70 wt%), CaO (11.65 wt%) và TiO2 (3.89 wt%) từ tro núi lửa và NaOH được đưa vào trong phương pháp tổng hợp. Những tạp chất này mang lại cho vật liệu zeolit các khả năng lý hóa khác nhau. Việc áp dụng zeolit thu được trong một thử nghiệm hấp phụ fluoride sơ bộ với nước rửa le giàu fluoride đã được kiểm nghiệm theo một cách mới. Hiệu suất loại bỏ đạt 41.4% ở pH axit (5.77) với liều lượng 2 g L−1 vật liệu zeolit hấp phụ. Một vật liệu có giá trị gia tăng được thu được và được áp dụng một cách sơ bộ để giải quyết vấn đề phát sinh do chính tro núi lửa, cho phép tình trạng Kết thúc Chất thải và đáp ứng các mục tiêu khác nhau của các mục tiêu phát triển bền vững trong Chương trình nghị sự 2030 của Liên Hợp Quốc.
Từ khóa
#tro núi lửa #zeolit #xử lý nước #fluoride #tổng hợp thủy nhiệtTài liệu tham khảo
Almirón J, Vargas M, Tupayachy-Quispe D et al (2022) Influence of the process of synthesis of zeolites from volcanic ash in its synergistic action as a flame-retardant for polypropylene composites. Buildings 12:24. https://doi.org/10.3390/buildings12010024
Amonte C, Melián GV, Asensio-Ramos M et al (2022) Hydrogeochemical temporal variations related to the recent volcanic eruption at the Cumbre Vieja Volcano, La Palma, Canary Islands. Front Earth Sci (lausanne) 10:1003890. https://doi.org/10.3389/feart.2022.1003890
Arroyo X, Andreu L, López-Andrés S, García-Lorenzo ML (2021) Caracterización de materiales geológicos del volcán de Cumbre Vieja (La Palma, España) y su posible revalorización como materia prima en aplicaciones ambientales. In: García Romero E, Fernández Barrenechea J, García Rivas J, Arroyo Rey X, del Buey Fernández P (ed) Libro de resúmenes de la XXVII Reunión de la Sociedad Española de Arcillas. Sociedad Española de Arcillas, Madrid, España, pp 13–14
Ayoob S, Gupta AK (2006) Fluoride in drinking water: a review on the status and stress effects. Crit Rev Environ Sci Technol 36:433–487. https://doi.org/10.1080/10643380600678112
Bagnato E, Aiuppa A, Andronico D, et al (2011) Leachate analyses of volcanic ashes from Stromboli volcano: a proxy for the volcanic gas plume composition?. J Geophys Res Atmos 116. https://doi.org/10.1029/2010JD015512
Barone G, Mazzoleni P, Corsaro RA et al (2016) Nanoscale surface modification of Mt. Etna volcanic ashes. Geochim Cosmochim Acta 174:70–84. https://doi.org/10.1016/j.gca.2015.11.011
Barsotti S, Andronico D, Neri A et al (2010) Quantitative assessment of volcanic ash hazards for health and infrastructure at Mt. Etna (Italy) by numerical simulation. J Volcanol Geoth Res 192:85–96. https://doi.org/10.1016/j.jvolgeores.2010.02.011
Belviso C (2018) Ultrasonic vs hydrothermal method: different approaches to convert fly ash into zeolite. How they affect the stability of synthetic products over time? Ultrason Sonochem 43:9–14. https://doi.org/10.1016/j.ultsonch.2017.12.050
Belviso C, Cavalcante F, Fiore S (2010) Synthesis of zeolite from Italian coal fly ash: differences in crystallization temperature using seawater instead of distilled water. Waste Manag 30:839–847. https://doi.org/10.1016/j.wasman.2009.11.015
Belviso C, Cavalcante F, Javier Huertas F et al (2012) The crystallisation of zeolite (X- and A-type) from fly ash at 25 °C in artificial sea water. Microporous Mesoporous Mater 162:115–121. https://doi.org/10.1016/j.micromeso.2012.06.028
Belviso C, Perchiazzi N, Cavalcante F (2019) Zeolite from fly ash: an investigation on metastable behavior of the newly formed minerals in a medium-high-temperature range. Ind Eng Chem Res 58(44):20472–20480. https://doi.org/10.1021/acs.iecr.9b03784
Belviso C, Abdolrahimi M, Peddis D et al (2021) Synthesis of zeolite from volcanic ash: characterization and application for cesium removal. Microporous Mesoporous Mater 319:111045. https://doi.org/10.1016/j.micromeso.2021.111045
Blanton TN, Huang TC, Toraya H, Hubbard CR, Robie SB, Louër D, Göbel HE, Gilles R, Raftery T (1995) JCPDS-International centre for diffraction data round robin study of silver behenate. A possible low-angle X-ray diffraction calibration standard. Powder Diffr 10(2):91–95. https://doi.org/10.1017/S0885715600014421
Bonadonna C, Pistolesi M, Biass S et al (2022) Physical characterization of long-lasting hybrid eruptions: the 2021 Tajogaite eruption of Cumbre Vieja (La Palma, Canary Islands). J Geophys Res Solid Earth 127:e2022JB025302. https://doi.org/10.1029/2022JB025302
Carracedo JC, Troll VR, Day JMD et al (2022) The 2021 eruption of the Cumbre Vieja volcanic ridge on La Palma, Canary Islands. Geol Today 38:94–107. https://doi.org/10.1111/gto.12388
Cejka J, Corma A, Zones S (2011) Zeolites and catalysis. Synthesis, reactions and applications. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Chang HL, Shih WH (1998) A general method for the conversion of fly ash into zeolites as ion exchangers for cesium. Ind Eng Chem Res 37:71–78. https://doi.org/10.1021/ie970362o
Chen J, Yang R, Zhang Z, Wu D (2022) Removal of fluoride from water using aluminum hydroxide-loaded zeolite synthesized from coal fly ash. J Hazard Mater 421:126817. https://doi.org/10.1016/j.jhazmat.2021.126817
Cundy CS, Cox PA (2005) The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism. Microporous Mesoporous Mater 82:1–78
Delmelle P, Lambert M, Dufrêne Y et al (2007) Gas/aerosol-ash interaction in volcanic plumes: new insights from surface analyses of fine ash particles. Earth Planet Sci Lett 259:159–170. https://doi.org/10.1016/j.epsl.2007.04.052
Environmental Protection Agency (2010) Guidance on classification of waste according to EWC-Stat categories. Eurostat. https://ec.europa.eu/eurostat/documents/342366/351806/Guidance-on-EWCStat-categories-2010.pdf/0e7cd3fc-c05c-47a7-818f-1c2421e55604. Accessed 22 Dec 2023
Ermolin MS, Fedotov PS, Malik NA, Karandashev VK (2018) Nanoparticles of volcanic ash as a carrier for toxic elements on the global scale. Chemosphere 200:16–22. https://doi.org/10.1016/j.chemosphere.2018.02.089
European Council (2008) Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. Official Journal of the European Union. http://data.europa.eu/eli/dir/2008/98/oj. Accessed 22 Dec 2023
Fernández-Turiel JL, Saavedra-Alonso J, Ruggieri F, et al (2012) Geochemistry of volcanic ash along two transects in South America: environmental implications. Geo-Temas 1–32
Gagliano E, Sgroi M, Falciglia PP et al (2022) Removal of ammonium from wastewater by zeolite synthetized from volcanic ash: batch and column tests. J Environ Chem Eng 10:107539. https://doi.org/10.1016/j.jece.2022.107539
Ge Q, Moeen M, Tian Q et al (2020) Highly effective removal of Pb2+ in aqueous solution by Na-X zeolite derived from coal gangue. Environ Sci Pollut Res 27:7398–7408. https://doi.org/10.1007/s11356-019-07412-z
Gómez-Hortigüela L, Pérez-Pariente J, García R et al (2013) Natural zeolites from Ethiopia for elimination of fluoride from drinking water. Sep Purif Technol 120:224–229. https://doi.org/10.1016/j.seppur.2013.10.006
Habuda-Stanić M, Ravančić M, Flanagan A (2014) A review on adsorption of fluoride from aqueous solution. Materials 7:6317–6366. https://doi.org/10.3390/ma7096317
Hamoud MA, Abo-Zahra SF, Attia MA et al (2023) Efficient adsorption of cesium cations and chromate anions by one-step process using surfactant-modified zeolite. Environ Sci Pollut Res 30:53140–53156. https://doi.org/10.1007/s11356-023-25644-y
Han C, Yang T, Liu H et al (2019) Characterizations and mechanisms for synthesis of chitosan-coated Na–X zeolite from fly ash and As(V) adsorption study. Environ Sci Pollut Res 26:10106–10116. https://doi.org/10.1007/s11356-019-04466-x
He K, Chen Y, Tang Z, Hu Y (2016) Removal of heavy metal ions from aqueous solution by zeolite synthesized from fly ash. Environ Sci Pollut Res 23:2778–2788. https://doi.org/10.1007/s11356-015-5422-6
Horwell CJ, Baxter PJ (2006) The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation. Bull Volcanol 69:1–24. https://doi.org/10.1007/s00445-006-0052-y
Ivanova II, Kolyagin YG, Kasyanov IA et al (2017) Time-resolved in situ MAS NMR monitoring of the nucleation and growth of zeolite BEA catalysts under hydrothermal conditions. Angew Chemie – Int Ed 56:15344–15347. https://doi.org/10.1002/anie.201709039
Jenkins SF, Wilson T, Magill C, Stewart C, Blong R, Marzocchi W, Boulton M, Bonadonna C, Costa A (2015). Volcanic ash fall hazard and risk. In: Loughlin SC, Sparks S, Brown SK, Jenkins SF, Vye-Brown C (ed) Global Volcanic Hazards and Risk, Cambridge University Press, pp 173–222
Jha B, Singh DN (2011) A review on synthesis, characterization and industrial applications of fly ash zeolites. J Mater Educ 33:65–132. https://doi.org/10.1002/chin.201225227
Jones MT, Gislason SR (2008) Rapid releases of metal salts and nutrients following the deposition of volcanic ash into aqueous environments. Geochim Cosmochim Acta 72:3661–3680. https://doi.org/10.1016/j.gca.2008.05.030
Kumar PS, Suganya S, Srinivas S et al (2019) Treatment of fluoride-contaminated water. A review. Environ Chem Lett 17:1707–1726. https://doi.org/10.1007/s10311-019-00906-9
Kupwade-Patil K, Chin SH, Johnston ML et al (2018) Particle size effect of volcanic ash towards developing engineered Portland cements. J Mater Civ Eng 30:04018190. https://doi.org/10.1061/(asce)mt.1943-5533.0002348
Le Maitre RW, Streckeisen A, Zanettin B, Le Bas MJ, Bonin B, Bateman P (2005) Igneous rocks: a classification and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, Cambridge
Lechner P, Tupper A, Guffanti M et al (2018) Volcanic ash and aviation—the challenges of real-time, global communication of a natural hazard. In: Fearnley Carina J, Bird Deanne K, Katherine H et al (eds) Advances in volcanology. Springer, Cham, Barcelona, Spain, pp 51–64
Lee MG, Park JW, Kam SK, Lee CH (2018) Synthesis of Na-A zeolite from Jeju Island scoria using fusion/hydrothermal method. Chemosphere 207:203–208. https://doi.org/10.1016/j.chemosphere.2018.05.080
Liu H, Yue Y, Shen T et al (2019) Transformation and crystallization behaviors of titanium species in synthesizing Ti-ZSM-5 zeolites from natural rectorite mineral. Ind Eng Chem Res 58:11861–11870. https://doi.org/10.1021/acs.iecr.9b01826
Longpré MA, Felpeto A (2021) Historical volcanism in the Canary Islands; part 1: a review of precursory and eruptive activity, eruption parameter estimates, and implications for hazard assessment. J Volcanol Geoth Res 419:107363. https://doi.org/10.1016/j.jvolgeores.2021.107363
López-Delgado A, Padilla I, Sánchez-Hernández R, Rodríguez O, López-Andrés S (2017) Procedimiento de revalorización de un residuo procedente de la molienda de escorias de aluminio. http://hdl.handle.net/10261/176220. Accessed 22 Dec 2023
López-Delgado A, Robla JI, Padilla I et al (2020) Zero-waste process for the transformation of a hazardous aluminum waste into a raw material to obtain zeolites. J Clean Prod 255:120178. https://doi.org/10.1016/j.jclepro.2020.120178
Lü H, Wang B, Ban Q (2010) Defluoridation of drinking water by zeolite NaP1 synthesized from coal fly ash. Energy Sources, Part A: Recovery, Util Environ Eff 32:1509–1516. https://doi.org/10.1080/15567030902780352
Luévano-Hipólito E, Torres-Martínez LM, Fernández-Trujillo A (2021) Ternary ZnO/CuO/Zeolite composite obtained from volcanic ash for photocatalytic CO2 reduction and H2O decomposition. J Phys Chem Solids 151:109917. https://doi.org/10.1016/j.jpcs.2020.109917
Mañosa J, Serrano-Conte J, Maldonado-Alameda A et al (2023) Pyroclastic volcanic ash as a potential precursor of alkali-activated binders – a case study from Tajogaite (La Palma, Canary Islands) volcano eruption. J Build Eng 72:106623. https://doi.org/10.1016/j.jobe.2023.106623
Martin JD (2004) Using XPowder: a software package for powder x-ray diffraction analysis. 84-609-1497-6, D.L. GR 1001/04. http://www.xpowder.com. Accessed 22 Dec 2023
Molina A, Poole C (2004) A comparative study using two methods to produce zeolites from fly ash. Miner Eng 17:167–173. https://doi.org/10.1016/j.mineng.2003.10.025
Monzón JD, Gonzalez MR, Muñoz M et al (2021) Phase-transition process in the hydrothermal zeolitization of volcanic ash into LTA and FAU structures. Clays Clay Miner 69:735–745. https://doi.org/10.1007/s42860-021-00148-3
Muñoz M, Pasquale G, Sathicq AG et al (2019) Volcanic ash as reusable catalyst in the green synthesis of 3H–1,5-benzodiazepines. Green Process Synth 8:600–610. https://doi.org/10.1515/gps-2019-0030
Muñoz M, Pereyra AM, Gonzalez MR et al (2023) Zeolitized volcanic ashes as supports for Anderson heteropolycompound catalysts. Application in the oxidation of diphenyl sulfide. Mater Today Commun 34:105459. https://doi.org/10.1016/j.mtcomm.2023.105459
Muñoz Pérez Sócrates P, Charca Mamani S, Dávila Gamonal CM et al (2022) Use of fly ash in the production of geopolymers: a literature review. Innov Infrastruct Solut 7:236. https://doi.org/10.1007/s41062-022-00835-7
Murrieta-Rico FN, Antúnez-García J, Yocupicio-Gaxiola RI et al (2023) One-pot synthesis of iron-modified zeolite X and characterization of the obtained materials. Catalysts 13:1159. https://doi.org/10.3390/catal13081159
Naciones Unidas/CEPAL (2019) La Agenda 2030 y los Objetivos de Desarrollo Sostenible: una oportunidad para América Latina y el Caribe. Objetivos, metas e indicadores mundiales. https://hdl.handle.net/11362/40155. Accessed 22 Dec 2023
Naik SP, Chiang AST, Thompson RW (2003) Synthesis of zeolitic mesoporous materials by dry gel conversion under controlled humidity. J Phys Chem B 107:7006–7014. https://doi.org/10.1021/jp034425u
Novembre D, Di Sabatino B, Gimeno D et al (2004) Synthesis of Na-X zeolites from tripolaceous deposits (Crotone, Italy) and volcanic zeolitised rocks (Vico volcano, Italy). Microporous Mesoporous Mater 75:1–11. https://doi.org/10.1016/j.micromeso.2004.06.022
Oleksiak MD, Soltis JA, Conato MT et al (2016) Nucleation of FAU and LTA zeolites from heterogeneous aluminosilicate precursors. Chem Mater 28:4906–4916. https://doi.org/10.1021/acs.chemmater.6b01000
Onyango MS, Kojima Y, Aoyi O et al (2004) Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9. J Colloid Interface Sci 279:341–350. https://doi.org/10.1016/j.jcis.2004.06.038
Óskarsson N (1980) The interaction between volcanic gases and tephra: fluorine adhering to tephra of the 1970 hekla eruption. J Volcanol Geoth Res 8:251–266. https://doi.org/10.1016/0377-0273(80)90107-9
Otieno SO, Kengara FO, Kowenje CO, Mokaya R (2023) Hydrothermal synthesis of zeolites using silica extracted from tropical volcanic ash. Mater Adv 4:2292–2300. https://doi.org/10.1039/d3ma00065f
Panda L, Kar BB (2018) Preparation of fly ash based zeolite for fluoride removal. Asian J Water Environ Pollut 15:105–113. https://doi.org/10.3233/AJW-180063
Prodinger S, Shi H, Eckstein S et al (2017) Stability of zeolites in aqueous phase reactions. Chem Mater 29:7255–7262. https://doi.org/10.1021/acs.chemmater.7b01847
Prodinger S, Vjunov A, Hu JZ et al (2018) Elementary steps of faujasite formation followed by in situ spectroscopy. Chem Mater 30:888–897. https://doi.org/10.1021/acs.chemmater.7b04554
Rahmani A, Nouri J, Kamal Ghadiri S et al (2010) Adsorption of fluoride from water by Al 3+ and Fe 3+ pretreated natural Iranian zeolites. Int J Environ Res 4:607–614
Ranasinghe RAJC, Hansima MACK, Nanayakkara KGN (2022) Adsorptive removal of fluoride from water by chemically modified coal fly ash: synthesis, characterization, kinetics, and mechanisms. Groundw Sustain Dev 16:100699. https://doi.org/10.1016/j.gsd.2021.100699
Rodríguez F, Pérez NM, Amonte C, Martín-Lorenzo A, Melián GV, Coldwell BC, Pankhurst MJ, Asensio-Ramos M, Hernández PA, Padrón E (2022) Geochemistry of ash lecheates during the 2021 eruption of Cumbre Vieja volcano, La Palma, Canary Islands. Display. https://doi.org/10.5194/egusphere-egu22-9629
Ruano-Ravina A, Acosta O, Díaz Pérez D et al (2023) A longitudinal and multidesign epidemiological study to analyze the effect of the volcanic eruption of Tajogaite volcano (La Palma, Canary Islands). The ASHES study protocol. Environ Res 216:114486. https://doi.org/10.1016/j.envres.2022.114486
Ruggieri F, Saavedra J, Fernandez-Turiel JL et al (2010) Environmental geochemistry of ancient volcanic ashes. J Hazard Mater 183:353–365. https://doi.org/10.1016/j.jhazmat.2010.07.032
Ruggieri F, Gil RA, Fernandez-Turiel JL et al (2012) Multivariate factorial analysis to design a robust batch leaching test to assess the volcanic ash geochemical hazard. J Hazard Mater 213:273–284. https://doi.org/10.1016/j.jhazmat.2012.01.091
Ruggieri F, Forte G, Bocca B et al (2023) Potentially harmful elements released by volcanic ash of the 2021 Tajogaite eruption (Cumbre Vieja volcano, Canary Island, Spain): implications for human health. Sci Total Environ 905:167103. https://doi.org/10.1016/j.scitotenv.2023.167103
Sánchez-España J, Mata MP, Vegas J et al (2023) Leaching tests reveal fast aluminum fluoride release from ashfall accumulated in La Palma (Canary Islands, Spain) after the 2021 Tajogaite eruption. J Volcanol Geoth Res 444:107959. https://doi.org/10.1016/j.jvolgeores.2023.107959
Sánchez-Hernández R, López-Delgado A, Padilla I et al (2016) One-step synthesis of NaP1, SOD and ANA from a hazardous aluminum solid waste. Microporous Mesoporous Mater 226:267–277. https://doi.org/10.1016/j.micromeso.2016.01.037
Sánchez-Hernández R, Padilla I, López-Andrés S, López-Delgado A (2017) Eco-friendly bench-scale zeolitization of an Al-containing waste into gismondine-type zeolite under effluent recycling. J Clean Prod 161:792–802. https://doi.org/10.1016/j.jclepro.2017.05.201
Sánchez-Hernández R, Padilla I, López-Andrés S, López-Delgado A (2018a) Single and competitive adsorptive removal of lead, cadmium, and mercury using zeolite adsorbent prepared from industrial aluminum waste. Desalin Water Treat 126:181–195. https://doi.org/10.5004/dwt.2018.22816
Sánchez-Hernández R, Padilla I, López-Andrés S, López-Delgado A (2018b) Al-waste-based zeolite adsorbent used for the removal of ammonium from aqueous solutions. Int J Chem Eng 2018:11. https://doi.org/10.1155/2018/1256197
Sanhueza-Núñez VM, Bennun-Torres LD (2015) Synthesis of zeolitic materials from volcanic ash in presence and absence of cetyltrimethylammonium bromide. Revista Internacional De Contaminacion Ambiental 31:185–193
Seddon KR, Zaworotko M (1999) Crystal engineering: the design and application of functional solids, 1st edn. Springer Science & Business Media, Digby, Nova Scotia, Canada
Stewart C, Damby DE, Tomaˇsek I, Horwell CJ, Plumlee GS, Armienta MA, Hinojosa MGR, Appleby M, Delmelle P, Cronin S, Ottley CJ, Oppenheimer C, Morman S (2020) Assessment of leachable elements in volcanic ashfall: a review and evaluation of a standardized protocol for ash hazard characterization. J Volcanol Geotherm Res 392:106756. https://doi.org/10.1016/j.jvolgeores.2019.106756
Sun Y, Fang Q, Dong J et al (2011) Removal of fluoride from drinking water by natural stilbite zeolite modified with Fe(III). Desalination 277:121–127. https://doi.org/10.1016/j.desal.2011.04.013
Teutli-Sequeira A, Solache-Ríos M, Martínez-Miranda V, Linares-Hernández I (2014) Comparison of aluminum modified natural materials in the removal of fluoride ions. J Colloid Interface Sci 418:254–260. https://doi.org/10.1016/j.jcis.2013.12.020
Waghmare S, Arfin T, Rayalu S et al (2015) Adsorption behavior of modified zeolite as novel adsorbents for fluoride removal from drinking water: surface phenomena, kinetics and thermodynamics studies. Int J Sci Eng Technol Res 4:4114–4124. https://doi.org/10.5194/egusphere-egu22-9629
Walton RI, Millange F, O’Hare D et al (2001) In situ energy-dispersive X-ray diffraction study of the hydrothermal crystallization of zeolite A. 1. Influence of reaction conditions and transformation into sodalite. J Phys Chem B 105:83–90. https://doi.org/10.1021/jp002711p
Wang Y, Luo M, Xu F, Zhang W (2015) Conversion of volcanic tephra to zeolites for calcium ion cross-linked alginate-zeolite composites for enhanced aqueous removal of Cu(II) ions. Water Air Soil Pollut 226:1–13. https://doi.org/10.1007/s11270-015-2554-8
Wen J, Yan C, Xing L et al (2021) Simultaneous immobilization of As and Cd in a mining site soil using HDTMA-modified zeolite. Environ Sci Pollut Res 28:9935–9945. https://doi.org/10.1007/s11356-020-11477-6
WHO (2022) Guidelines for drinking-water quality fourth edition incorporating the first and second addenda WHO Press. World Health Organization, Geneve, Switzerland. http://www.who.int/publications/i/item/9789240045064. Accessed 22 Dec 2023
Xu X, Li Q, Cui H et al (2011) Adsorption of fluoride from aqueous solution on magnesia-loaded fly ash cenospheres. Desalination 272:233–239. https://doi.org/10.1016/j.desal.2011.01.028
Ye Z, Zhao Y, Zhang H et al (2022) Mesocrystal morphology regulation by “alkali metals ion switch”: re-examining zeolite nonclassical crystallization in seed-induced process. J Colloid Interface Sci 608:1366–1376. https://doi.org/10.1016/j.jcis.2021.10.125
Zhang Z, Tan Y, Zhong M (2011) Defluorination of wastewater by calcium chloride modified natural zeolite. Desalination 276:246–252. https://doi.org/10.1016/j.desal.2011.03.057
Zhang J, Tang X, Yi H et al (2022) Synthesis, characterization and application of Fe-zeolite: a review. Appl Catal A Gen 630:118467. https://doi.org/10.1016/j.apcata.2021.118467
Zhou X, Shi S, Ding B, et al (2023) Optimization of preparation of NaA zeolite from fly ash for CO2 capture. Environ Sci Pollut Res 1–15. https://doi.org/10.1007/s11356-023-29648-6
Zuo H, Chen L, Kong M et al (2018) Toxic effects of fluoride on organisms. Life Sci 198:18–24. https://doi.org/10.1016/j.lfs.2018.02.001