Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tổng hợp nanoparticle bạc và vàng từ dịch chiết lá Jasminum nervosum và hoạt động diệt ấu trùng của chúng đối với véc tơ giun chỉ và virut arbo Culex quinquefasciatus Say (Diptera: Culicidae)
Tóm tắt
Nanoparticle bạc và vàng từ Jasminum nervosum L. có các tính chất quang học độc đáo như dải hấp thụ rộng trong vùng nhìn thấy của quang phổ điện từ. Việc xác định các particle này bằng cách sử dụng phổ kế UV, quang phổ hồng ngoại biến đổi Fourier, nhiễu xạ tia X và kính hiển vi điện tử truyền dẫn đã xác nhận rằng các hạt là bạc (AgNPs) và vàng (AuNPs) có kích thước từ 4–22 nm và 2–20 nm với kích thước trung bình lần lượt là 9.4 nm và 10 nm. AgNPs và AuNPs từ J. nervosum có hoạt tính diệt ấu trùng cao đối với véc tơ giun chỉ và virut arbo, Culex quinquefasciatus, hơn so với dịch chiết lá nước. Nồng độ gây chết (LC50 và LC95) được quan sát đối với ấu trùng tuổi ba là 57.40 và 144.36 μg/ml cho AgNPs và 82.62 và 254.68 μg/ml cho AuNPs sau 24 giờ điều trị, tương ứng. Thời gian chết để tiêu diệt 50% ấu trùng C. quinquefasciatus là 2.24 và 4.51 giờ ở nồng độ 150 μg/ml của AgNPs và AuNPs, trong khi đối với dịch chiết lá nước của J. nervosum thì là 9.44 giờ ở nồng độ 500 μg/ml (F
2,14 = 397.51, P < 0.0001). Biểu đồ phân tích thành phần chính trình bày sự phân cụm khác nhau giữa dịch chiết lá nước, AgNP và AuNPs liên quan đến liều lượng gây chết và thời gian gây chết. Kết luận từ các phát hiện hiện tại cho thấy các AgNPs và AuNPs được tổng hợp sinh học từ dịch chiết lá nước của J. nervosum có thể là một loại thuốc trừ sâu nanobi an toàn hơn cho môi trường và có hiệu quả diệt ấu trùng tiềm năng đối với ấu trùng C. quinquefasciatus, có thể được sử dụng để phòng ngừa nhiều bệnh tật đáng sợ.
Từ khóa
#nanoparticle bạc #nanoparticle vàng #Jasminum nervosum #hoạt động diệt ấu trùng #Culex quinquefasciatus #thuốc trừ sâu sinh họcTài liệu tham khảo
Abbott WS (1925) A method of computing the effectiveness of insecticides. J Eco Ento 18(2):265–267
Addiss DG (2013) Global elimination of lymphatic filariasis: a mass uprising of compassion. PLoS Negl Trop Dis 7(8), e2264
Ahmad N, Sharma S, Alam MK, Singh VN, Shamsi SF, Mehta BR, Fatma A (2010) Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B Biointerfaces 81(1):81–86
Ankamwar B, Damle C, Absar A, Mural S (2005) Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol 10:1665–1671
Asmathunisha N, Kathiresan K, Anburaj NMA (2010) Synthesis of antimicrobial silver nanoparticles by callus leaf extracts from salt marsh plant Sesuvium portulacastrum L. Coll Surf B Biointer 79:488–493
Barman G, Maiti S, Laha JK (2013) Bio-fabrication of gold nanoparticles using aqueous extract of red tomato and its use as a colorimetric sensor. Nanoscale Res Lett 8:181
Chang MC, Chiu LQ, Wei Z, Green PS (1996) Oleaceae. In: Wu ZY, Raven PH (eds) Flora of China, Myrsinaceae through Loganiaceae, vol 15. Science Press/Missouri Botanical Garden Press, Beijing, pp 272–319
Choi O, Deng KK, Kim NJ, Rose LJ, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions and silver chloride colloids on microbial growth. Water Resources 42:3066–3074
Editorial committee of the National Chinese Medicine Administrative bureau (2005) Chinese material medica. Shanghai Scientific and Technical Education Publishing House, Shanghai
Finney DJ (1971) Probit analysis, vol 551, 3rd edn. Cambridge University Press, London, pp 68–72
Gerberg EJ, Barnard DR, Ward RA (1994) Manual for mosquito rearing and experimental techniques. J Am Mosq Control Assoc 5:98
Gnanadesigan M, Anand M, Ravikumar S, Maruthupandy M, Vijayakumar V, Selvam S, Dhineshkumar M, Kumaraguru AK (2011) Biosynthesis of silver nanoparticles by using mangrove plant extract and their potential mosquito larvicidal property. Asian Pacific J Trop Med 4(10):799–803
Guo Z, Li P, Huang W, Wang J, Liu Y, Liu B, Wang Y, Wu S, Kennelly EJ, Long C (2014) Antioxidant and anti-inflammatory caffeoyl phenylpropanoid and secoiridoid glycosides from Jasminum nervosum stems, a Chinese folk medicine. Phytochemistry 106:124–133
Gyapong J, Gyapong M, Yellu M, Anakwah K, Amofah G, Bockarie M, Adjei S (2010) Integration of control of neglected tropical diseases into health-care systems: challenges and opportunities. Lancet 375(9709):160–165
Hammer O, Harper DAT, Ryan PD (2001) PAST: palaeontological statistical software for education and data analysis. Palaeontologia Electronica 4(1):9
Huo L, Li P, Chen R, Deng CC, Lu R, Lu CS (2011a) Volatile constituents of the leaves and the stems of Jasminum nervosum Lour. Lishizheng Med Mat Med Res 22:2616–2618
Huo L, Lu R, Li P, Liao Y, Chen R, Deng CH, Lu CH, Wei X, Li Y (2011b) Antioxidant activity, total phenolic, and total flavonoid of extracts from the stems of Jasminum nervosum Lour. Grasas Y Aceites 62(2):149–154
Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144
Jain D, Kumar DH, Kachhwaha S, Kothari SL (2009) Synthesis of plant- mediated silver nanoparticles using papaya fruit extract and evaluation of their anti microbial activities. Dig J Nanomater Bios 4:557–563
Jayaseelan C, Rahuman AA, Rajakumar G, Vishnu Kirthi A, Santhoshkumar T, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res 109(1):185–194
Jin W, Jan GF (2006) Biological activities of iridoids. Herald of Medicine 25:530–533
Jones CM, Machin C, Mohammed K, Majambere S, Ali AS, Khatib BO, Mcha J, Ranson H, Kelly-Hope LA (2012) Insecticide resistance in Culex quinquefasciatus from Zanzibar: implications for vector control programmes. Parasite Vectors 5:78
Kaushal K, Sharma AK, Sarita K, Sunita P, Manas S, Chauhan LS (2011) Multiple insecticide resistance/susceptibility status of Culex quinquefasciatus, principal vector of bancroftian filariasis from filaria endemic areas of Northern India. Asian Pac J Trop Med 4(6):426–429
Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Coll Surf B Biointer 76(1):50–56
Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84:151–157
Kumar V, Yadav SC, Yadav SK (2010) Syzygium cumini leaf and seed extract mediated biosynthesis of silver nanoparticles and their characterization. J Chem Technol Biotechnol 85(10):1301–1309
Kwan JL, Kluh S, Madon MB, Reisen WK (2010) West Nile virus emergence and persistence in Los Angeles, California, 2003–2008. Am J Trop Med Hyg 83:400–412
Lalrotluanga LN, Senthil-Kumar N, Gurusubramanian G (2012) Insecticidal and repellent activity of Hiptage benghalensis L. Kruz (Malpighiaceae) against mosquito vectors. Parasitol Res 111:1007–1017
Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, Bagavan A, Zahir AA, Elango G, Kamaraj C (2010) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 108(6):1541–1549
Minjas JN, Sarda RK (1986) Laboratory observations on the toxicity of Swartzia madagascariens (leguminaceae) extract to mosquito larvae. Trans R Soc Trop Med Hyg 80:460–461
Mukunthan KS, Elumalai EK, Patel TN, Murty VR (2011) Catharanthus roseus: a natural source for the synthesis of silver nanoparticles. Asian Pac J Trop Biomed 1(4):270–274
Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800
Nabikhan A, Kandasamy K, Raj A, Alikunh NM (2010) Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from salt marsh plant, Sesuvium portulacastrum. Colloids Surf B Biointerfaces 79:488–493
Nakkala JR, Mata R, Bhagat E, Sadras SR (2015) Green synthesis of silver and gold nanoparticles from Gymnema sylvestre leaf extract: study of antioxidant and anticancer activities. J Nanopart Res 17:151–166
Naresh-Kumar A, Murugan K, Madhiyazhagan P, Kovendan K, Prasannakumar K, Thangamani S, Barnard D (2011) Mosquitocidal and water purification properties of Cynodon dactylon, Aloe vera, Hemidesmus indicus and Coleus amboinicus. Parasitol Res 110(4):1435–1443
Naresh-Kumar A, Murugan K, Rejeeth C, Madhiyazhagan P, Barnar DR (2012) Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vector Borne Zoonotic Dis 12(3):262–268
Naresh-Kumar A, Jeyalalitha T, Murugan K, Madhiyazhagan P (2013) Bioefficacy of plant-mediated gold nanoparticles and Anthocepholus cadamba on filarial vector, Culex quinquefasciatus (Insecta: Diptera: Culicidae). Parasitol Res 112:1053–1063
Norris LC, Norris DE (2011) Insecticide resistance in Culex quinquefasciatus mosquitoes after the introduction of insecticide-treated bed nets in Macha, Zambia. J Vector Ecol 36(2):411–420
Parashar UK, Saxenaa PS, Srivastava A (2009) Bioinspired synthesis of silver nanoparticles. Dig J Nanomater Biostruct 4:159–166
Prasad TNVKV, Elumalai EK (2011) Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity. Asian Pac J Trop Biomed 1(6):439–443
Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A (2011) Biomimetic synthesis of Ag NPs by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf B: Biointer 82(1):152–159
Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K (2007) Larvicidal activity of some Euphorbiaceae plant extracts against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 102(7):867–873
Rajakumar G, Rahuman A (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrate leaf extract against filariasis and malaria vectors. Acta Trop 118(3):196–203
Samuel S, Lalrotluanga R, Muthukumaran RB, Gurusubramanian G, Senthil-Kumar N (2014) Larvicidal activity of Ipomoea cairica (L.) Sweet and Ageratina adenophora (Spreng.) King & H. Rob. plant extracts against arboviral and filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). Exp Parasitol 141:112–121
Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108(3):693–702
Sap-Iam N, Homklinchan C, Larpudomlert R, Warisnoicharoen W, Sereemaspun A, Dubas ST (2010) UV irradiation induced silver nanoparticles as mosquito larvicides. J Appl Sci 10(23):3132–3136
Sathishkumar M, Sneha K, Won SW, Cho CWS, Kim-Yun YS (2009) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf Biointerfaces 73:332–338
Sathishkumar G, Gobinath C, Karpagam K, Hemamalini V, Premkumar K, Sivaramakrishnan S (2012) Phyto-synthesis of silver nanoscale particles using Morinda citrifolia L. and its inhibitory activity against human pathogens. Colloids Surf B Biointerfaces 95:235–240
Sathishkumar G, Gobinath C, Wilson A, Sivaramakrishnan S (2014) Dendrophthoe falcata (L.f) Ettingsh (Neem mistletoe): a potent bioresource to fabricate silver AgNPs for anticancer effect against human breast cancer cells (MCF-7). Spectrochimica Acta A 128:285–90
Sathyavathi R, Balamurali Krishna M, Venugopal RS, Saritha R, Narayana RD (2010) Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv Sci Lett 3:1–6
Senthil-Kumar N, Varma P, Gurusubramanian G (2009) Larvicidal and adulticidal activities of some medicinal plants against the malarial vector, Anopheles stephensi (Liston). Parasitol Res 104:237–244
Senthil-Kumar N, Gurusubramanian G, Murugan K (2014) Joint insecticidal action of Bacillus thuringiensis kurstaki with Annona squamosa L. and Prosopis juliflora Swartz DC on Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Proc Zool Soc (Calcutta) 67(1):8–17
Shankar SS, Rai A, Ahmad A, Sastry MJ (2004) Rapid synthesis of Au, Ag and bimetallic Au shell nanoparticles using Neem. J Colloid Interface Sci 275:496–502
Shrivastava S, Dash D (2010) Label-free colorimetric estimation of proteins using nanoparticles of silver. Nano Micro Lett 2:164–168
Singhal G, Bhavesh R, Kasariya K, Sharma AR, Sing RP (2011) Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J Nanopart Res 13:2981–2988
Snedecor GW, Cochran WG (1989) Statistical methods, 8th edn. Iowa State University Press, Iowa
Sondi I, Salopek S (2004) Silver nanoparticles as antimicrobial agents: a case study on E. coli as a model Gram-negative bacteria. J Colloid Interface Sci 275:177–182
Soni N, Prakash S (2012) Synthesis of gold nanoparticles by the fungus Aspergillus niger and its efficacy against mosquito larvae. Reports in Parasitol 2:1–7
Soni N, Prakash S (2014) Green nanoparticles for mosquito control. The Scientific World Journal Article ID 496362, 6 pages http://dx.doi.org/10.1155/2014/496362
SPSS Inc. (2013) SPSS for Windows, Version 21.0. Release 21.0.0642. SPSS, Chicago, IL, USA
Stuart BH (2002) Polymer analysis. Wiley, Chichester
Suganya A, Murugan K, Kovendan K, Mahesh Kumar P, Hwang JS (2013) Green synthesis of silver nanoparticles using Murraya koenigii leaf extract against Anopheles stephensi and Aedes aegypti. Parasitol Res 112:1385–1397
Turell MJ (2012) Members of the Culex pipiens complex as vectors of viruses. J Am Mosq Control Assoc 28(4):123–126
Veerakumar K, Govindarajan M, Rajeswary M (2013) Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae). Parasitol Res 112(12):4073–4085
Veerakumar K, Govindarajan M, Rajeswary M, Muthukumaran U (2014) Mosquito larvicidal properties of silver nanoparticles synthesized using Heliotropium indicum (Boraginaceae) against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 113:2363–2373
Velayutham K, Rahuman AA, Rajakumar G, Roopan SM, Elango G, Kamaraj C, Marimuthu S, Santhoshkumar T, Iyappan M, Siva C (2013) Larvicidal activity of green synthesized silver nanoparticles using bark aqueous extract of Ficus racemosa against Culex quinquefasciatus and Culex gelidus. Asian Pacific J Trop Med 6(2):95–101
Vilchis-Nestora AR, Avalos-Borjaa M, Gomezb SA, Hernandezb JA, Olivasa A, Zepedaa TA (2009) Alternative bioreduction synthesis method for the preparation of Au(AgAu)/SiO2–Al2O3 catalysts: oxidation and hydrogenation of CO. Appl Catal B Environ 90:64–73
Walenta G, Fullmann T (2004) Advances in quantitative XRD analysis for clincker, cements and cementitious additions. Powder Diffract 47:287–296
Willems, Wildenberg VD (2005) Roadmap Report on Nanoparticles. W&W Espana s.l., Barcelona, Spain 1–57.
World Health Organization (2005) Guidelines for laboratory and field testing of mosquito larvicides. Communicable disease control, prevention and eradication, WHO pesticide evaluation scheme. WHO,Geneva, 2005, WHO/CDS/WHOPES/GCDPP/1.3
World Health Organization (2014) World Health Organization: Lymphatic Filariasis, Fact Sheet No 102. <www.who.int/inf-fs/en/fact102.html 2014 > (accessed March, 2014)
Zhan G, Huang J, Lin L, Lin W, Emmanuel K, Li Q (2011) Synthesis of gold nanoparticles by Cacumen platycladi leaf extract and its simulated solution: toward the plant-mediated biosynthetic mechanism. J Nanopart Res 13:4957–4968