Synthesis of self-assemble pH-responsive cyclodextrin block copolymer for sustained anticancer drug delivery

Chinese Journal of Polymer Science - Tập 35 - Trang 924-938 - 2017
Bei-bei Lu1, Lu-lu Wei1, Gui-hua Meng1, Jun Hou2, Zhi-yong Liu1, Xu-hong Guo1,3
1School of Chemistry & Chemical Engineering, Shihezi University/Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Shihezi, China
2Department of Immunology, Shihezi University School of Medicine/Department of Pathology and Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
3State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, China

Tóm tắt

Well-defined pH-responsive poly(ε-caprolactone)-graft-β-cyclodextrin-graft-poly(2-(dimethylamino)ethylmethacrylate)-co-poly(ethylene glycol) methacrylate amphiphilic copolymers (PCL-g-β-CD-g-P(DMAEMA-co-PEGMA)) were synthesized using a combination of atom transfer radical polymerization (ATRP), ring opening polymerization (ROP) and “click” chemistry. Successful synthesis of polymers was confirmed by Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H-NMR), and gel permeation chromatography (GPC). Then, the polymers could selfassemble into micelles in aqueous solution, which was demonstrated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The pH-responsive self-assembly behavior of these copolymers in water was investigated at different pH values of 7.4 and 5.0 for controlled doxorubicin (DOX) release, and these results revealed that the release rate of DOX could be effectively controlled by altering the pH, and the release of drug loading efficiency (DLE) was up to 88% (W/W). CCK-8 assays showed that the copolymers had low toxicity and possessed good biodegradability and biocompatibility, whereas the DOX-loaded micelles remained with high cytotoxicity for HeLa cells. Moreover, confocal laser scanning microscopy (CLSM) images revealed that polymeric micelles could actively target the tumor site and the efficient intracellular DOX release from polymeric micelles toward the tumor cells further confirmed the anti-tumor effect. The DOX-loaded micelles could easily enter the cells and produce the desired pharmacological action and minimize the side effect of free DOX. These results successfully indicated that pH-responsive polymeric micelles could be potential hydrophobic drug delivery carriers for cancer targeting therapy with sustained release.

Tài liệu tham khảo

Liu, F. and Urban, M.W., Prog. Polym. Sci, 2010, 35: 3 Urban, M.W., Prog. Polym. Sci., 2009, 34: 679 Mura, S., Nicolas, J. and Couvreur, P., Nat. Mater., 2013, 12: 991 Aloorkar, N.H., Kulkarni, A.S., Patil, R.A. and Ingale, D.J., Int. J. Pharm. Sci. Nanotech., 2012, 5: 1675 Zhang, Q., Ko, N.R. and Oh, J.K., Chem. Commun., 2012, 48: 7542 Li, L., Lu, B.B., Fan, Q.K., Wei, L.L., Wu, J.N., Hou, J., Guo, X.H. and Liu, Z.Y., RSC Adv., 2016, 6: 27102 Zhang, Y.J., Li, P., Pan, H., Liu, L.L., Ji, M.Y., Sheng, N., Wang, C., Cai, L.T. and Ma, Y.F., Biomaterials, 2016, 83: 219 Lu, B.B., Li, L., Wei, L.L., Guo, X.H., Hou, J. and Liu, Z.Y., RSC Adv., 2016, 6: 50993 Hervault, A., Lim, M., Boyer, C., Dunn, A.E., Mott, D., Maenosono, S. and Thanh, N.T.K., Nanoscale, 2016, 8: 12152 Zhang, H.T., Tian, W., Suo, R.T., Yue, Y., Fan, X.D., Yang, Z., Li, H., Zhang, W.B. and Bai, Y., J. Mater. Chem. B, 2015, 3: 8528 Guo, Z.R., Feng, Y.J., Zhu, D.W., He, S., Liu, H.B., Shi, X.R., Sun, J. and Qu, M.Z., Adv. Funct. Mater., 2013, 23: 5010 Wang, W., Liu, H.B., Mu, M., Yin, H.Y. and Feng, Y.J., Polym. Chem., 2015, 6: 2900 Yin, H.Y., Feng, Y.J., Liu, H.B., Mu, M. and Fei, C.H., Langmuir, 2014, 30: 9911 Lee, S., Saito, K., Lee, H.R., Lee, M.J., Shibasaki, Y., Oishi, Y. and Kim, B.S., Biomacromolecules, 2012, 13: 1190 Liu, X., Ni, P.H., He, J.L. and Zhang, M.Z., Macromolecules, 2010, 43: 4771 Ulbrich, K., Holá, K., Šubr, V., Bakandritsos, A., Tuček, J. and Zbořil, R., Chem. Rev., 2016, 116: 5338 Durmaz, Y.Y., Lin, Y.L. and ElSayed, M.E.H., Adv. Funct. Mater., 2013, 23: 3885 Ren, J.M., McKenzie, T.G., Fu, Q., Wong, E.H.H., Xu, J.T. and An, Z.S., Shanmugam, S., Davis, T.P., Boyer, C. and Qiao, G.G., Chem. Rev., 2016, 116: 6743 Altintas, O., Vogt, A.P., Kowollik, C.B. and Tunca, U., Polym. Chem., 2012, 3: 34 Wang, J.J., Zhang, J.L., Yu, S.L., Wu, W. and Jiang, X.Q., ACS Macro Lett., 2013, 2: 82 Cameron, D.J.A. and Shaver, M.P., Chem. Soc. Rev., 2011, 40: 1761 Ren, K., Zhang, M.Z., He, J.L., Wu Y.X. and Ni, P.H., ACS Appl. Mater. Interfaces, 2015, 7: 11263 Boyer, C., Corrigan, N.A., Jung, K., Nguyen, D., Nguyen, T.K., Adnan, N.N.M., Oliver, S., Shanmugam, S. and Yeow, J., Chem. Rev., 2016, 116: 1803 Higashiharaa, T., Hayashib, M. and Hirao, A., Prog. Polym. Sci., 2011, 36: 323 Boyer, C., Derveaux, A., Zetterlund, P.B. and Whittaker, M.R., Polym. Chem., 2012, 3: 117 Hao, Y., He, J.L., Li, S., Liu, J., Zhang, M.Z. and Ni, P.H., J. Mater. Chem. B, 2014, 2: 4237 Warren, N.J. and Armes, S.P., J. Am. Chem. Soc., 2014, 136: 10174 Shi, P.F., Li, Q.L., He, X., Li, S.T., Sun, P.C. and Zhang, W.Q., Macromolecules, 2014, 47: 7442 Golas, P.L. and Matyjaszewski, K., Chem. Soc. Rev., 2010, 39: 1338 Kempe, K., Krieg, A., Becer, C.R. and Schubert, U.S., Chem. Soc. Rev., 2012, 41: 176 Yuan, W.Z., Li, X.F., Gua, S.Y., Cao, A. and Ren, J., Polymer, 2011, 52: 658 Manakker, F., Vermonden, T., Nostrum, C.F. and Hennink, W.E., Biomacromolecules, 2009, 10: 3157 Chen, G.S. and Jiang, M., Chem. Soc. Rev., 2011, 40: 2254 Zhang, J.X. and Ma, P.X., Adv. Drug Deliver. Rev., 2013, 65: 1215 Wei, H. and Yu, C.Y., Biomater. Sci., 2015, 3: 1050 Davis, M.E. and Brewster, M.E., Nat. Rev. Drug Discov., 2004, 3: 1023 Uekama, K., Hirayama, F. and Irie, T., Chem. Rev., 1998, 98: 2045 Yuan, Y.Y., Du, Q., Wang, Y.C. and Wang, J., Macromolecules, 2010, 43: 1739 Chen, J.C. and Liu, M.Z., RSC Adv., 2014, 4: 9684 He, Q., Wu, W., Xiu, K.M., Zhang, Q., Xu, F.J. and Li, J.S., Int. J. Pharm., 2013, 443: 110 Yin, J.J., Shumyak, S.P., Burgess, C., Zhou, Z.W., He, Z.X., Zhang, X.J., Pan, S.T., Yang, T.X., Duan, W., Qiu, J.X. and Zhou, S.F., Int. J. Pharm., 2015, 10: 4717 Liu, J., Xu, Y., Yang, Q., Li, C., Hennink, W.E., Zhuo, R. and Jiang, X., Acta Biomater., 2013, 9: 7758 Wang, M.M., Wang, Y., Hu, K., Shao, N.M. and Cheng, Y.Y., Biomater. Sci., 2015, 3: 480 Allen, T.M. and Cullis, P.R., Science, 2004, 303: 1818 Tungala, K., Adhikary, P. and Krishnamoorthi, S., Carbohyd. Polym., 2013, 95: 295 Ge, Z.S. and Liu, S.Y., Chem. Soc. Rev., 2013, 42: 7289