Synthesis of poly(propylene fumarate)

Nature Protocols - Tập 4 Số 4 - Trang 518-525 - 2009
F. Kurtis Kasper1, Kazuhiro Tanahashi2, John P. Fisher3, Antonios G. Mikos2
1Department of Bioengineering, Rice University, MS 142, P.O. Box 1892, Houston, Texas 77251, USA.
2Department of Bioengineering, Rice University, MS-142, P. O. Box 1892,Houston,USA
3Fischell Department of Bioengineering, University of Maryland, 3238 Jeong H. Kim Engineering Building, College Park, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Coombes, D.M., Shelley, M.J., McKenzie, J. & Sneddon, K.J. Biodegradable fixation in oral and maxillofacial surgery. Dent Update 34, 641–644 (2007).

Guelcher, S.A. Biodegradable polyurethanes: synthesis and applications in regenerative medicine. Tissue Eng. Part B Rev. 14, 3–17 (2008).

Houchin, M.L. & Topp, E.M. Chemical degradation of peptides and proteins in PLGA: a review of reactions and mechanisms. J. Pharm. Sci. 97, 2395–2404 (2008).

Hutmacher, D.W., Schantz, J.T., Lam, C.X., Tan, K.C. & Lim, T.C. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J. Tissue Eng. Regen. Med. 1, 245–260 (2007).

Tsuji, H. Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol. Biosci. 5, 569–597 (2005).

Venugopal, J., Low, S., Choon, A.T. & Ramakrishna, S. Interaction of cells and nanofiber scaffolds in tissue engineering. J. Biomed. Mater Res. B Appl. Biomater 84, 34–48 (2008).

Fisher, J.P., Holland, T.A., Dean, D. & Mikos, A.G. Photoinitiated cross-linking of the biodegradable polyester poly(propylene fumarate). Part II. In vitro degradation. Biomacromolecules 4, 1335–1342 (2003).

Timmer, M.D., Ambrose, C.G. & Mikos, A.G. In vitro degradation of polymeric networks of poly(propylene fumarate) and the crosslinking macromer poly(propylene fumarate)-diacrylate. Biomaterials 24, 571–577 (2003).

Timmer, M.D., Ambrose, C.G. & Mikos, A.G. Evaluation of thermal- and photo-crosslinked biodegradable poly(propylene fumarate)-based networks. J. Biomed. Mater Res. A 66, 811–818 (2003).

Fisher, J.P., Holland, T.A., Dean, D., Engel, P.S. & Mikos, A.G. Synthesis and properties of photocross-linked poly(propylene fumarate) scaffolds. J. Biomater Sci. Polym. Ed. 12, 673–687 (2001).

Peter, S.J., Kim, P., Yasko, A.W., Yaszemski, M.J. & Mikos, A.G. Crosslinking characteristics of an injectable poly(propylene fumarate)/beta-tricalcium phosphate paste and mechanical properties of the crosslinked composite for use as a biodegradable bone cement. J. Biomed. Mater. Res. 44, 314–321 (1999).

He, S., Yaszemski, M.J., Yasko, A.W., Engel, P.S. & Mikos, A.G. Injectable biodegradable polymer composites based on poly(propylene fumarate) crosslinked with poly(ethylene glycol)-dimethacrylate. Biomaterials 21, 2389–2394 (2000).

He, S. et al. Synthesis of biodegradable poly(propylene fumarate) networks with poly(propylene fumarate)-diacrylate macromers as crosslinking agents and characterization of their degradation products. Polymer 42, 1251–1260 (2001).

Fisher, J.P., Dean, D. & Mikos, A.G. Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly(propylene fumarate) biomaterials. Biomaterials 23, 4333–4343 (2002).

Timmer, M.D., Carter, C., Ambrose, C.G. & Mikos, A.G. Fabrication of poly(propylene fumarate)-based orthopaedic implants by photo-crosslinking through transparent silicone molds. Biomaterials 24, 4707–4714 (2003).

Cooke, M.N., Fisher, J.P., Dean, D., Rimnac, C. & Mikos, A.G. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. J. Biomed. Mater. Res. B Appl. Biomater. 64, 65–69 (2003).

Dean, D. et al. Poly(propylene fumarate) and poly(DL-lactic-co-glycolic acid) as scaffold materials for solid and foam-coated composite tissue-engineered constructs for cranial reconstruction. Tissue Eng. 9, 495–504 (2003).

Dean, D. et al. Effect of transforming growth factor beta 2 on marrow-infused foam poly(propylene fumarate) tissue-engineered constructs for the repair of critical-size cranial defects in rabbits. Tissue Eng. 11, 923–939 (2005).

Fisher, J.P. et al. Soft and hard tissue response to photocrosslinked poly(propylene fumarate) scaffolds in a rabbit model. J. Biomed. Mater. Res. 59, 547–556 (2002).

Hedberg, E.L. et al. Methods: a comparative analysis of radiography, microcomputed tomography, and histology for bone tissue engineering. Tissue Eng. 11, 1356–1367 (2005).

Hacker, M.C. et al. Biodegradable fumarate-based drug-delivery systems for ophthalmic applications. J. Biomed. Mater Res. A 88, 976–989 (2008).

Haesslein, A., Hacker, M.C. & Mikos, A.G. Effect of macromer molecular weight on in vitro ophthalmic drug release from photo-crosslinked matrices. Acta Biomater. 4, 1–10 (2008).

Haesslein, A. et al. Long-term release of fluocinolone acetonide using biodegradable fumarate-based polymers. J. Control Release 114, 251–260 (2006).

Hedberg, E.L. et al. Effect of varied release kinetics of the osteogenic thrombin peptide TP508 from biodegradable, polymeric scaffolds on bone formation in vivo . J. Biomed. Mater. Res. A 72, 343–353 (2005).

Hedberg, E.L., Tang, A., Crowther, R.S., Carney, D.H. & Mikos, A.G. Controlled release of an osteogenic peptide from injectable biodegradable polymeric composites. J. Control Release 84, 137–150 (2002).

Ueda, H. et al. Injectable, in situ forming poly(propylene fumarate)-based ocular drug delivery systems. J. Biomed. Mater. Res. A 83, 656–666 (2007).

Payne, R.G., McGonigle, J.S., Yaszemski, M.J., Yasko, A.W. & Mikos, A.G. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 3. Proliferation and differentiation of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate). Biomaterials 23, 4381–4387 (2002).

Payne, R.G., McGonigle, J.S., Yaszemski, M.J., Yasko, A.W. & Mikos, A.G. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 2. Viability of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate). Biomaterials 23, 4373–4380 (2002).

Porter, B.D. et al. Mechanical properties of a biodegradable bone regeneration scaffold. J. Biomech. Eng. 122, 286–288 (2000).

Timmer, M.D., Horch, R.A., Ambrose, C.G. & Mikos, A.G. Effect of physiological temperature on the mechanical properties and network structure of biodegradable poly(propylene fumarate)-based networks. J. Biomater. Sci. Polym. Ed. 14, 369–382 (2003).

Domb, A.J., Cato, T.L., Israeli, O., Gerhart, T.N. & Langer, R. The formation of propylene fumarate oligomers for use in bioerodible bone cement composites. J. Polym. Sci. A 28, 973–985 (1990).

Shung, A.K., Timmer, M.D., Jo, S., Engel, P.S. & Mikos, A.G. Kinetics of poly(propylene fumarate) synthesis by step polymerization of diethyl fumarate and propylene glycol using zinc chloride as a catalyst. J. Biomater. Sci. Polym. Ed. 13, 95–108 (2002).

Peter, S.J., Suggs, L.J., Yaszemski, M.J., Engel, P.S. & Mikos, A.G. Synthesis of poly(propylene fumarate) by acylation of propylene glycol in the presence of a proton scavenger. J. Biomater. Sci. Polym. Ed. 10, 363–373 (1999).

Peter, S.J. et al. Characterization of partially saturated poly(propylene fumarate) for orthopaedic application. J. Biomater. Sci. Polym. Ed. 8, 893–904 (1997).

Peter, S.J., Lu, L., Kim, D.J. & Mikos, A.G. Marrow stromal osteoblast function on a poly(propylene fumarate)/beta-tricalcium phosphate biodegradable orthopaedic composite. Biomaterials 21, 1207–1213 (2000).

Peter, S.J. et al. Effects of transforming growth factor beta1 released from biodegradable polymer microparticles on marrow stromal osteoblasts cultured on poly(propylene fumarate) substrates. J. Biomed. Mater. Res. 50, 452–462 (2000).

Peter, S.J., Miller, S.T., Zhu, G., Yasko, A.W. & Mikos, A.G. In vivo degradation of a poly(propylene fumarate)/beta-tricalcium phosphate injectable composite scaffold. J. Biomed. Mater. Res. 41, 1–7 (1998).

Fisher, J.P. et al. Effect of biomaterial properties on bone healing in a rabbit tooth extraction socket model. J. Biomed. Mater. Res. A 68, 428–438 (2004).

Fisher, J.P. et al. Photoinitiated cross-linking of the biodegradable polyester poly(propylene fumarate). Part I. Determination of network structure. Biomacromolecules 4, 1327–1334 (2003).

Christenson, E.M., Soofi, W., Holm, J.L., Cameron, N.R. & Mikos, A.G. Biodegradable fumarate-based polyHIPEs as tissue engineering scaffolds. Biomacromolecules 8, 3806–3814 (2007).

Hedberg, E.L. et al. In vivo degradation of porous poly(propylene fumarate)/poly(DL-lactic-co-glycolic acid) composite scaffolds. Biomaterials 26, 4616–4623 (2005).

Hedberg, E.L. et al. In vitro degradation of porous poly(propylene fumarate)/poly(DL-lactic-co-glycolic acid) composite scaffolds. Biomaterials 26, 3215–3225 (2005).

Horch, R.A. et al. Nanoreinforcement of poly(propylene fumarate)-based networks with surface modified alumoxane nanoparticles for bone tissue engineering. Biomacromolecules 5, 1990–1998 (2004).

Shi, X. et al. In vitro cytotoxicity of single-walled carbon nanotube/biodegradable polymer nanocomposites. J. Biomed. Mater. Res. A 86, 813–823 (2008).

Shi, X. et al. Injectable nanocomposites of single-walled carbon nanotubes and biodegradable polymers for bone tissue engineering. Biomacromolecules 7, 2237–2242 (2006).

Shi, X. et al. Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering. Biomaterials 28, 4078–4090 (2007).

Suggs, L.J. et al. Preparation and characterization of poly(propylene fumarate-co-ethylene glycol) hydrogels. J. Biomater. Sci. Polym. Ed. 9, 653–666 (1998).

Suggs, L.J. et al. In vitro and in vivo degradation of poly(propylene fumarate-co-ethylene glycol) hydrogels. J. Biomed. Mater Res. 42, 312–320 (1998).

Suggs, L.J. & Mikos, A.G. Development of poly(propylene fumarate-co-ethylene glycol) as an injectable carrier for endothelial cells. Cell Transplant 8, 345–350 (1999).

Suggs, L.J., Shive, M.S., Garcia, C.A., Anderson, J.M. & Mikos, A.G. In vitro cytotoxicity and in vivo biocompatibility of poly(propylene fumarate-co-ethylene glycol) hydrogels. J. Biomed. Mater. Res. 46, 22–32 (1999).

Suggs, L.J., West, J.L. & Mikos, A.G. Platelet adhesion on a bioresorbable poly(propylene fumarate-co-ethylene glycol) copolymer. Biomaterials 20, 683–690 (1999).

Shung, A.K., Behravesh, E., Jo, S. & Mikos, A.G. Crosslinking characteristics of and cell adhesion to an injectable poly(propylene fumarate-co-ethylene glycol) hydrogel using a water-soluble crosslinking system. Tissue Eng. 9, 243–254 (2003).

Behravesh, E., Jo, S., Zygourakis, K. & Mikos, A.G. Synthesis of in situ cross-linkable macroporous biodegradable poly(propylene fumarate-co-ethylene glycol) hydrogels. Biomacromolecules 3, 374–381 (2002).

Behravesh, E. & Mikos, A.G. Three-dimensional culture of differentiating marrow stromal osteoblasts in biomimetic poly(propylene fumarate-co-ethylene glycol)-based macroporous hydrogels. J. Biomed. Mater. Res. A 66, 698–706 (2003).

Behravesh, E., Timmer, M.D., Lemoine, J.J., Liebschner, M.A. & Mikos, A.G. Evaluation of the in vitro degradation of macroporous hydrogels using gravimetry, confined compression testing, and microcomputed tomography. Biomacromolecules 3, 1263–1270 (2002).

Behravesh, E., Zygourakis, K. & Mikos, A.G. Adhesion and migration of marrow-derived osteoblasts on injectable in situ crosslinkable poly(propylene fumarate-co-ethylene glycol)-based hydrogels with a covalently linked RGDS peptide. J. Biomed. Mater. Res. A 65, 260–270 (2003).

Jo, S., Shin, H. & Mikos, A.G. Modification of oligo(poly(ethylene glycol) fumarate) macromer with a GRGD peptide for the preparation of functionalized polymer networks. Biomacromolecules 2, 255–261 (2001).