Tổng hợp nanogel dựa trên polyglycerol phân hủy theo pH bằng liên kết chéo qua iEDDA để bảo quản asparaginase sử dụng phương pháp kết tủa ngược

Alexander Oehrl1, Sebastian Schötz1, Rainer Haag1
1Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195, Berlin, Germany

Tóm tắt

Tóm tắt Cần thiết có các nanocarrier tương thích sinh học, đáp ứng với môi trường và có thể mở rộng quy mô cho việc vận chuyển nhắm mục tiêu và kích hoạt các protein điều trị. Các polymer phù hợp, phương pháp chuẩn bị và hóa học liên kết chéo phải được xem xét cho sự hình thành nanogel. Dendritic polyglycerol (dPG) tương thích sinh học được sử dụng trong phương pháp kết tủa ngược nhẹ nhàng, không có chất hoạt động bề mặt để chuẩn bị nanogel. Hóa học liên kết chéo Diels-Alder (iEDDA) nhanh chóng, tương thích sinh học và sinh học bền vững được sử dụng. Trong nghiên cứu này, sự tổng hợp của các nanogel có thể phân hủy theo pH, dựa trên tetrazine, norbonene và macromonomer bicyclo[6.1.0]nonyne (BCN) được báo cáo. Các macromonomer không độc hại lên đến 2.5 mg mL−1 trong ba dòng tế bào khác nhau. Nanogel thu được có kích thước từ 47 đến 200 nm và có thể bị phân hủy trong vòng 48 giờ ở pH 4.5 (BA-gels) và pH 3 (THP-gels), tương ứng. Việc bao encapsulate asparaginase (32 kDa) mang lại hiệu suất bao gồm lên đến 93% tại 5 wt.% nguyên liệu. Tổng thể, các dPG-nanogel có thể phân hủy theo pH được liên kết chéo bằng iEDDA từ kết tủa ngược là những ứng viên đầy hứa hẹn cho các ứng dụng y sinh.

Từ khóa


Tài liệu tham khảo

Ruiz-Garcia A, Bermejo M, Moss A, Casabo VG (2008) Pharmacokinetics in drug discovery. J Pharm Sci 97:654–690. https://doi.org/10.1002/jps.21009

Raemdonck K, Demeester J, De Smedt S (2009) Advanced nanogel engineering for drug delivery. Soft Matter 5:707–715. https://doi.org/10.1039/b811923f

Farjadian F, Ghasemi A, Gohari O, Roointan A, Karimi M, Hamblin MR (2019) Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine 14:93–126. https://doi.org/10.2217/nnm-2018-0120

Choi YH, Han HK (2018) Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. J Pharm Investig 48:43–60. https://doi.org/10.1007/s40005-017-0370-4

Jiskoot W, Randolph TW, Volkin DB, Russell Middaugh C, Schöneich C, Winter G, Friess W, Crommelin DJA, Carpenter JF (2012) Protein instability and immunogenicity: roadblocks to clinical application of injectable protein delivery systems for sustained release. J Pharm Sci 101:946–954. https://doi.org/10.1002/jps.23018

Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5:505–515. https://doi.org/10.1021/mp800051m

Dobrovolskaia MA, Neun BW, Man S, Ye X, Hansen M, Patri AK, Crist RM, McNeil SE (2014) Protein corona composition does not accurately predict hematocompatibility of colloidal gold nanoparticles. Nanomed Nanotechnol Biol Med 10:1453–1463. https://doi.org/10.1016/j.nano.2014.01.009

Gröger D, Kerschnitzki M, Weinhart M, Reimann S, Schneider T, Kohl B, Wagermaier W, Schulze-Tanzil G, Fratzl P, Haag R (2014) Selectivity in bone targeting with multivalent dendritic polyanion dye conjugates. Adv Healthc Mater 3:375–385. https://doi.org/10.1002/adhm.201300205

Seymour LW, Duncan R, Strohalm J, Kopeček J (1987) Effect of molecular weight (Mw) ofN-(2-hydroxypropyl)methacrylamide copolymers on body distribution and rate of excretion after subcutaneous, intraperitoneal, and intravenous administration to rats. J Biomed Mater Res 21:1341–1358. https://doi.org/10.1002/jbm.820211106

Haag R, Kratz F (2006) Polymer therapeutics: concepts and applications. Angew Chem Int Ed 45:1198–1215. https://doi.org/10.1002/anie.200502113

Greenwald RB, Choe YH, McGuire J, Conover CD (2003) Effective drug delivery by PEGylated drug conjugates. Adv Drug Deliv Rev 55:217–250. https://doi.org/10.1016/S0169-409X(02)00180-1

Thomas A, Müller SS, Frey H (2014) Beyond Poly(ethylene glycol): linear polyglycerol as a multifunctional polyether for biomedical and pharmaceutical applications. Biomacromolecules 15:1935–1954. https://doi.org/10.1021/bm5002608

Baca QJ, Leader B, Golan DE (2017) Protein therapeutics. Springer International Publishing, Cham

Turecek PL, Bossard MJ, Schoetens F, Ivens IA (2016) PEGylation of biopharmaceuticals: a review of chemistry and nonclinical safety information of approved drugs. J Pharm Sci 105:460–475. https://doi.org/10.1016/j.xphs.2015.11.015

Zhang P, Sun F, Liu S, Jiang S (2016) Anti-PEG antibodies in the clinic: current issues and beyond PEGylation. J Control Release 244:184–193. https://doi.org/10.1016/j.jconrel.2016.06.040

Singh S, Topuz F, Hahn K, Albrecht K, Groll J (2013) Embedding of active proteins and living cells in redox-sensitive hydrogels and nanogels through enzymatic cross-linking. Angew Chem Int Ed 52:3000–3003. https://doi.org/10.1002/anie.201206266

Chacko RT, Ventura J, Zhuang J, Thayumanavan S (2012) Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv Drug Deliv Rev 64:836–851. https://doi.org/10.1016/j.addr.2012.02.002

Karg M, Pich A, Hellweg T, Hoare T, Lyon LA, Crassous JJ, Suzuki D, Gumerov RA, Schneider S, Potemkin II, Richtering W (2019) Nanogels and microgels: from model colloids to applications, recent developments, and future trends. Langmuir 35:6231–6255. https://doi.org/10.1021/acs.langmuir.8b04304

Sivaram AJ, Rajitha P, Maya S, Jayakumar R, Sabitha M (2015) Nanogels for delivery, imaging and therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7:509–533. https://doi.org/10.1002/wnan.1328

Ekkelenkamp AE, Elzes MR, Engbersen JFJ, Paulusse JMJ (2018) Responsive crosslinked polymer nanogels for imaging and therapeutics delivery. J Mater Chem B 6:210–235. https://doi.org/10.1039/C7TB02239E

Kabanov AV, Vinogradov SV (2009) Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Ed 48:5418–5429. https://doi.org/10.1002/anie.200900441

Bazban-Shotorbani S, Dashtimoghadam E, Karkhaneh A, Hasani-Sadrabadi MM, Jacob KI (2016) Microfluidic directed synthesis of alginate nanogels with tunable pore size for efficient protein delivery. Langmuir 32:4996–5003. https://doi.org/10.1021/acs.langmuir.5b04645

Klinger D, Landfester K (2012) Enzymatic- and light-degradable hybrid nanogels: crosslinking of polyacrylamide with acrylate-functionalized Dextrans containing photocleavable linkers. J Polym Sci Part A Polym Chem 50:1062–1075. https://doi.org/10.1002/pola.25845

Thomann-Harwood LJ, Kaeuper P, Rossi N, Milona P, Herrmann B, McCullough KC (2013) Nanogel vaccines targeting dendritic cells: contributions of the surface decoration and vaccine cargo on cell targeting and activation. J Control Release 166:95–105. https://doi.org/10.1016/j.jconrel.2012.11.015

Gratton SEA, Pohlhaus PD, Lee J, Guo J, Cho MJ, DeSimone JM (2007) Nanofabricated particles for engineered drug therapies: a preliminary biodistribution study of PRINTTM nanoparticles. J Control Release 121:10–18. https://doi.org/10.1016/j.jconrel.2007.05.027

Modi S, Anderson BD (2013) Determination of drug release kinetics from nanoparticles: overcoming pitfalls of the dynamic dialysis method. Mol Pharm 10:3076–3089. https://doi.org/10.1021/mp400154a

Dey P, Bergmann T, Cuellar-Camacho JL, Ehrmann S, Chowdhury MS, Zhang M, Dahmani I, Haag R, Azab W (2018) Multivalent flexible nanogels exhibit broad-spectrum antiviral activity by blocking virus entry. ACS Nano 12:6429–6442. https://doi.org/10.1021/acsnano.8b01616

Witting M, Molina M, Obst K, Plank R, Eckl KM, Hennies HC, Calderón M, Frieß W, Hedtrich S (2015) Thermosensitive dendritic polyglycerol-based nanogels for cutaneous delivery of biomacromolecules. Nanomedicine 11:1179–1187. https://doi.org/10.1016/j.nano.2015.02.017

Wu C, Böttcher C, Haag R (2015) Enzymatically crosslinked dendritic polyglycerol nanogels for encapsulation of catalytically active proteins. Soft Matter 11:972–980. https://doi.org/10.1039/C4SM01746C

Steinhilber D, Witting M, Zhang X, Staegemann M, Paulus F, Friess W, Küchler S, Haag R (2013) Surfactant free preparation of biodegradable dendritic polyglycerol nanogels by inverse nanoprecipitation for encapsulation and release of pharmaceutical biomacromolecules. J Control Release 169:289–295. https://doi.org/10.1016/j.jconrel.2012.12.008

Seidi F, Jenjob R, Crespy D (2018) Designing smart polymer conjugates for controlled release of payloads. Chem Rev 118:3965–4036. https://doi.org/10.1021/acs.chemrev.8b00006

Zhang J, Jia Y, Li X, Hu Y, Li X (2011) Facile engineering of biocompatible materials with pH-modulated degradability. Adv Mater 23:3035–3040. https://doi.org/10.1002/adma.201100679

Chen W, Hou Y, Tu Z, Gao L, Haag R (2017) pH-degradable PVA-based nanogels via photo-crosslinking of thermo-preinduced nanoaggregates for controlled drug delivery. J Control Release 259:160–167. https://doi.org/10.1016/j.jconrel.2016.10.032

Yang H, Wang Q, Chen W, Zhao Y, Yong T, Gan L, Xu H, Yang X (2015) Hydrophilicity/hydrophobicity reversable and redox-sensitive nanogels for anticancer drug delivery. Mol Pharm 150409150353009:1636–1647. https://doi.org/10.1021/acs.molpharmaceut.5b00068

Pang X, Jiang Y, Xiao Q, Leung AW, Hua H, Xu C (2016) pH-responsive polymer–drug conjugates: design and progress. J Control Release 222:116–129. https://doi.org/10.1016/j.jconrel.2015.12.024

Mauri E, Perale G, Rossi F (2018) Nanogel functionalization: a versatile approach to meet the challenges of drug and gene delivery. ACS Appl Nano Mater 1:6525–6541. https://doi.org/10.1021/acsanm.8b01686

O’Donnell JM (2012) Reversible addition-fragmentation chain transfer polymerization in microemulsion. Chem Soc Rev 41:3061–3076. https://doi.org/10.1039/c2cs15275d

Antonietti M, Landfester K, Willert M et al (2001) Polyreactions in non-aqueous miniemulsions. Prog Polym Sci 27:689–757

Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60:1638–1649. https://doi.org/10.1016/j.addr.2008.08.002

Schubert S, Delaney Jr JT, Schubert US (2011) Nanoprecipitation and nanoformulation of polymers: from history to powerful possibilities beyond poly(lactic acid). Soft Matter 7:1581–1588. https://doi.org/10.1039/c0sm00862a

Perevyazko IY, Delaney JT, Vollrath A, Pavlov GM, Schubert S, Schubert US (2011) Examination and optimization of the self-assembly of biocompatible, polymeric nanoparticles by high-throughput nanoprecipitation. Soft Matter 7:5030–5035. https://doi.org/10.1039/c1sm05079f

Nair DP, Podgórski M, Chatani S, Gong T, Xi W, Fenoli CR, Bowman CN (2014) The thiol-Michael addition click reaction: a powerful and widely used tool in materials chemistry. Chem Mater 26:724–744. https://doi.org/10.1021/cm402180t

Späte A-K, Bußkamp H, Niederwieser A, Schart VF, Marx A, Wittmann V (2014) Rapid labeling of metabolically engineered cell-surface glycoconjugates with a carbamate-linked cyclopropene reporter. Bioconjug Chem 25:147–154. https://doi.org/10.1021/bc4004487

Oliveira BL, Guo Z, Bernardes GJL (2017) Inverse electron demand Diels-Alder reactions in chemical biology. Chem Soc Rev 46:4895–4950. https://doi.org/10.1039/c7cs00184c

Wu H, Devaraj NK (2016) Inverse electron-demand Diels–Alder bioorthogonal reactions. Top Curr Chem 374:3. https://doi.org/10.1007/s41061-015-0005-z

Knall A-C, Slugovc C (2013) Inverse electron demand Diels-Alder (iEDDA)-initiated conjugation: a (high) potential click chemistry scheme. Chem Soc Rev 42:5131–5142. https://doi.org/10.1039/c3cs60049a

Liu DS, Tangpeerachaikul A, Selvaraj R, Taylor MT, Fox JM, Ting AY (2012) Diels-Alder cycloaddition for fluorophore targeting to specific proteins inside living cells. J Am Chem Soc 134:792–795. https://doi.org/10.1021/ja209325n

Schoch J, Staudt M, Samanta A, Wiessler M, Jäschke A (2012) Site-specific one-pot dual labeling of DNA by orthogonal cycloaddition chemistry. Bioconjug Chem 23:1382–1386. https://doi.org/10.1021/bc300181n

Yang J, Šečkute J, Cole CM, Devaraj NK (2012) Live-cell imaging of cyclopropene tags with fluorogenic tetrazine cycloadditions. Angew Chem Int Ed 51:7476–7479. https://doi.org/10.1002/anie.201202122

Frey H, Haag R (2002) Dendritic polyglycerol: A new versatile biocompatible material. Rev Mol Biotechnol 90:257–267. https://doi.org/10.1016/S1389-0352(01)00063-0

Kurniasih IN, Keilitz J, Haag R (2015) Dendritic nanocarriers based on hyperbranched polymers. Chem Soc Rev 44:4145–4164. https://doi.org/10.1039/C4CS00333K

Steinhilber D, Seiffert S, Heyman JA, Paulus F, Weitz DA, Haag R (2011) Hyperbranched polyglycerols on the nanometer and micrometer scale. Biomaterials 32:1311–1316. https://doi.org/10.1016/j.biomaterials.2010.10.010

Khandare J, Mohr A, Calderón M, Welker P, Licha K, Haag R (2010) Structure-biocompatibility relationship of dendritic polyglycerol derivatives. Biomaterials 31:4268–4277. https://doi.org/10.1016/j.biomaterials.2010.02.001

Dommerholt J, Schmidt S, Temming R, Hendriks LJA, Rutjes FPJT, van Hest JCM, Lefeber DJ, Friedl P, van Delft FL (2010) Readily accessible bicyclononynes for bioorthogonal labeling and three-dimensional imaging of living cells. Angew Chem Int Ed 49:9422–9425. https://doi.org/10.1002/anie.201003761

Sisson AL, Haag R (2010) Polyglycerol nanogels: highly functional scaffolds for biomedical applications. Soft Matter 6:4968–4975. https://doi.org/10.1039/c0sm00149j