Tổng hợp các dẫn xuất (E)-2-(4-(1H-1,2,4-triazol-1-yl)styryl)-4-(alkyl/arylmethyleneoxy)quinazoline mới như các tác nhân kháng khuẩn

Molecular Diversity - Tập 22 - Trang 71-82 - 2017
Lan Yang1, Shijia Ge1, Jian Huang1, Xiaoping Bao1
1State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China

Tóm tắt

Một loạt các dẫn xuất mới (E)-2-(4-(1H-1,2,4-triazol-1-yl)styryl)-4-(alkyl/arylmethyleneoxy)quinazoline (4a–4s) đã được tổng hợp với hiệu suất tốt đến xuất sắc, và cấu trúc của chúng đã được xác định đầy đủ bằng phương pháp $$^{1}\hbox {H}$$ NMR, $$^{13}\hbox {C}$$ NMR, HRMS và quang phổ IR. Cấu trúc của hợp chất 4b được xác nhận thêm qua phân tích nhiễu xạ tia X đơn tinh thể. Kết quả thử nghiệm sinh học cho thấy các hợp chất 4s, 4q và 4n ức chế vi khuẩn gây bệnh thực vật Xanthomonas axonopodis pv. citri (Xac) một cách mạnh mẽ hơn so với thuốc diệt nấm thương mại bismerthiazol. Tuy nhiên, không có hợp chất nào có thể ức chế hiệu quả ba loại nấm gây bệnh được thử nghiệm ở nồng độ 50 $$\upmu \hbox {g/mL}$$.

Từ khóa


Tài liệu tham khảo

Li N, Huang L, Liu L, Li D, Dai S, Deng Z (2014) The relationship between PthA expression and the pathogenicity of Xanthomonas axonopodis pv. citri. Mol Biol Rep 41:967–975. https://doi.org/10.1007/s11033-013-2941-4 Lorenzo FD, Palmigiano A, Silipo A, Desaki Y, Garozzo D, Lanzetta R, Shibuya N, Molinaro A (2016) The structure of the lipooligosaccharide from Xanthomonas oryzae pv. oryzae: the causal agent of the bacterial leaf blight in rice. Carbohyd Res 427:38–43. https://doi.org/10.1016/j.carres.2016.03.026 Yuan S, Li M, Fang Z, Liu Y, Shi W, Pan B, Wu K, Shi J, Shen B, Shen Q (2016) Biological control of tobacco bacterial wilt using Trichoderma harzianum amended bioorganic fertilizer and the arbuscular mycorrhizal fungi Glomus mosseae. Biol Control 92:164–171. https://doi.org/10.1016/j.biocontrol.2015.10.013 Mehta A, Rosato YB (2003) A simple method for in vivo expression studies of Xanthomonas axonopodis pv. citri. Curr Microbiol 47:400–403. https://doi.org/10.1007/s00284-003-4051-3 Brunings AM, Gabriel DW (2003) Xanthomonas citri: breaking the surface. Mol Plant Pathol 4:141–157. https://doi.org/10.1046/j.1364-3703.2003.00163.x Graham JH, Gottwald TR, Cubero J, Achor DS (2004) Xanthomonas axonopodis pv. citri: factors affecting successful eradication of citrus canker. Mol Plant Pathol 5:1–15. https://doi.org/10.1046/J.1364-3703.2003.00197.X Niňo-Liu DO, Ronald PC, Bogdanove AJ (2006) Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol Plant Pathol 7:303–324. https://doi.org/10.1111/J.1364-3703.2006.00344.X Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA, Toth I, Salmond G, Foster GD (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629. https://doi.org/10.1111/J.1364-3703.2012.00804.X Nishi T, Tajima T, Noguchi S, Ajisaka H, Negishi H (2003) Identification of DNA markers of tobacco linked to bacterial wilt resistance. Theor Appl Genet 106:765–770. https://doi.org/10.1007/s00122-002-1096-9 Wang P, Gao M, Zhou L, Wu Z, Hu D, Hu J, Yang S (2016) Synthesis and antibacterial activity of pyridinium-tailored aromatic amphiphiles. Bioorg Med Chem Lett 26:1136–1139. https://doi.org/10.1016/j.bmcl.2016.01.053 Xu H, Zeng X (2010) Synthesis of diaryl-azo derivatives as potential antifungal agents. Bioorg Med Chem Lett 20:4193–4195. https://doi.org/10.1016/j.bmcl.2010.05.048 Wang PY, Zhou L, Zhou J, Wu ZB, Xue W, Song BA, Yang S (2016) Synthesis and antibacterial activity of pyridinium-tailored 2,5-substituted-1,3,4-oxadiazole thioether/sulfoxide/sulfone derivatives. Bioorg Med Chem Lett 26:1214–1217. https://doi.org/10.1016/j.bmcl.2016.01.029 Sheng C, Xu H, Wang W, Cao Y, Dong G, Wang S, Che X, Ji H, Miao Z, Yao J, Zhang W (2010) Design, synthesis and antifungal activity of isosteric analogues of benzoheterocyclic \(N\)-myristoyltransferase inhibitors. Eur J Med Chem 45:3531–3540. https://doi.org/10.1016/j.ejmech.2010.03.007 Su Q, Lu W, Du D, Chen F, Niu B, Chou KC (2017) Prediction of the aquatic toxicity of aromatic compounds to tetrahymena pyriformis through support vector regression. Oncotarget 8:49359–49369. https://doi.org/10.18632/oncotarget.17210 Khan I, Ibrar A, Abbas N, Saeed A (2014) Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: synthetic approaches and multifarious applications. Eur J Med Chem 76:193–244. https://doi.org/10.1016/j.ejmech.2014.02.005 Gao Y, Xiong Q, An R, Bao X (2011) Recent advances in the synthesis and antimicrobial activity of quinazoline derivatives. Chin J Org Chem 31:1529–1537 Sharma A, Luxami V, Paul K (2013) Synthesis, single crystal and antitumor activities of benzimidazole-quinazoline hybrids. Bioorg Med Chem Lett 23:3288–3294. https://doi.org/10.1016/j.bmcl.2013.03.107 El-Azab AS, ElTahir KEH (2012) Synthesis and anticonvulsant evaluation of some new 2,3,8-trisubstituted-4(3\(H\))-quinazoline derivatives. Bioorg Med Chem Lett 22:327–333. https://doi.org/10.1016/j.bmcl.2011.11.007 Zhu X, Horn KSV, Barber MM, Yang S, Wang MZ, Manetsch R, Werbovetz KA (2015) SAR refinement of antileishmanial \(N^{2}\),\(N^{4}\)-disubstituted quinazoline-2,4-diamines. Bioorg Med Chem 23:5182–5189. https://doi.org/10.1016/j.bmc.2015.02.020 Ji Q, Yang D, Wang X, Chen C, Deng Q, Ge Z, Yuan L, Yang X, Liao F (2014) Design, synthesis and evaluation of novel quinazoline-2,4-dione derivatives as chitin synthase inhibitors and antifungal agents. Bioorg Med Chem 22:3405–3413. https://doi.org/10.1016/j.bmc.2014.04.042 Bedi PMS, Kumar V, Mahajan MP (2004) Synthesis and biological activity of novel antibacterial quinazolines. Bioorg Med Chem Lett 14:5211–5213. https://doi.org/10.1016/j.bmcl.2004.07.065 Kumar A, Sharma P, Kumari P, Kalal BL (2011) Exploration of antimicrobial and antioxidant potential of newly synthesized 2,3-disubstituted quinazoline-4(3\(H\))-ones. Bioorg Med Chem Lett 21:4353–4357. https://doi.org/10.1016/j.bmcl.2011.05.031 Zoumpoulakis P, Camoutsis C, Pairas G, Soković M, Glamočlija J, Potamitis C, Pitsas A (2012) Synthesis of novel sulfonamide-1,2,4-triazoles, 1,3,4-thiadiazoles and 1,3,4-oxadiazoles, as potential antibacterial and antifungal agents. Biological evaluation and conformational analysis studies. Bioorg Med Chem 20:1569–1583. https://doi.org/10.1016/j.bmc.2011.12.031 Hashemi SM, Badali H, Irannejad H, Shokrzadeh M, Emami S (2015) Synthesis and biological evaluation of fluconazole analogs with triazole-modified scaffold as potent antifungal agents. Bioorg Med Chem 23:1481–1491. https://doi.org/10.1016/j.bmc.2015.02.011 Jiang Y, Zhang J, Cao Y, Chai X, Zou Y, Wu Q, Zhang D, Jiang Y, Sun Q (2011) Synthesis, in vitro evaluation and molecular docking studies of new triazole derivatives as antifungal agents. Bioorg Med Chem Lett 21:4471–4475. https://doi.org/10.1016/j.bmcl.2011.06.008 Wang Y, Damu GLV, Lv JS, Geng RX, Yang DC, Zhou CH (2012) Design, synthesis and evaluation of clinafloxacin triazole hybrids as a new type of antibacterial and antifungal agents. Bioorg Med Chem Lett 22:5363–5366. https://doi.org/10.1016/j.bmcl.2012.07.064 Li WJ, Li Q, Liu DL, Ding MW (2013) Synthesis, fungicidal activity, and sterol 14\(\alpha \)-demethylase binding interaction of 2-azolyl-3,4-dihydroquinazolines on Penicillium digitatum. J Agric Food Chem 61:1419–1426. https://doi.org/10.1021/jf305355u Jiang JB, Hesson DP, Dusak BA, Dexter DL, Kang GJ, Hamel E (1990) Synthesis and biological evaluation of 2-styrylquinazolin-4(3\(H\))-ones, a new class of antimitotic anticancer agents which inhibit tubulin polymerization. J Med Chem 33:1721–1728. https://doi.org/10.1021/jm00168a029 Gupta V, Kashaw SK, Jatav V, Mishra P (2008) Synthesis and antimicrobial activity of some new 3-[5-(4-substituted) phenyl-1,3,4-oxadiazole-2yl]-2-styrylquinazoline-4(3H)-ones. Med Chem Res 17:205–211. https://doi.org/10.1007/s00044-007-9054-3 Jampilek J, Musiol R, Finster J, Pesko M, Carroll J, Kralova K, Vejsova M, O’Mahony J, Coffey A, Dohnal J, Polanski J (2009) Investigating biological activity spectrum for novel styrylquinazoline analogues. Molecules 14:4246–4265. https://doi.org/10.3390/molecules14104246 Zhu YJ, Guo XF, Fan ZJ, Chen L, Ma LY, Wang HX, Wei Y, Xu XM, Lin JP, Bakulev VA (2016) Approach to thiazole-containing tetrahydropyridines via Aza-Rauhut–Currier reaction and their potent fungicidal and insecticidal activity. RSC Adv 6:112704–112711. https://doi.org/10.1039/c6ra24342h Guan A, Liu C, Yang X, Dekeyser M (2014) Application of the intermediate derivatization approach in agrochemical discovery. Chem Rev 114:7079–7107. https://doi.org/10.1021/cr4005605 Yan BR, Lv XY, Du H, Gao MN, Huang J, Bao XP (2016) Synthesis and biological activities of novel quinazolinone derivatives containing a 1,2,4-triazolylthioether moiety. Chem Pap 70:983–993. https://doi.org/10.1515/chempap-2016-0034 Pan D, Du H, Lü X, Bao X (2016) Synthesis and antibacterial activities of novel quinazoline-2,4-dione derivative containing the 1,2,4-triazole schiff-base unit. Chin J Org Chem 36:818–825. https://doi.org/10.6023/cjoc201510005 Yan B, Lü X, Du H, Bao X (2016) Design, synthesis and biological activities of novel quinazolinone derivative bearing 4-phenyl-5-thioxo-1,2,4-triazole Mannich bases. Chin J Org Chem 36:207–212. https://doi.org/10.6023/cjoc201506026 Liu J, Liu Y, Jian J, Bao X (2013) Synthesis and fungicidal activities of novel quinazoline derivatives containing 1,2,4-triazole Schiff-base unit. Chin J Org Chem 33:370–374. https://doi.org/10.6023/cjoc201209023 Venkatesh R, Kasaboina S, Gaikwad HK, Janardhan S, Bantu R, Nagarapu L, Sastry GN, Banerjee SK (2015) Design and synthesis of -(3-((9\(H\)-carbazol-4-yl)oxy)-2-hydroxypropyl)-2-phenylquinazolin-4(3\(H\))-one derivatives to induce ACE inhibitory activity. Eur J Med Chem 96:22–29. https://doi.org/10.1016/j.ejmech.2015.04.009 Jadhav GR, Shaikh MU, Kale RP, Shiradkar MR, Gill CH (2009) SAR study of clubbed [1,2,4]-triazolyl with fluorobenzimidazoles as antimicrobial and antituberculosis agents. Eur J Med Chem 44:2930–2935. https://doi.org/10.1016/j.ejmech.2008.12.001 Yang L, Bao XP (2017) Synthesis of novel 1,2,4-triazole derivatives containing the quinazolinylpiperidinyl moiety and \(N\)-(substituted phenyl)acetamide group as efficient bactericides against the phytopathogenic bacterium Xanthomonas oryzae pv. oryzae. RSC Adv 7:34005–34011. https://doi.org/10.1039/c7ra04819j Dalgaard P, Ross T, Kamperman L, Neumeyer K, McMeekin TA (1994) Estimation of bacterial growth rates from turbidimetric and viable count data. Int J Food Microbiol 23:391–404. https://doi.org/10.1016/0168-1605(94)90165-1 Xu WM, Han FF, He M, Hu DY, He J, Yang S, Song BA (2012) Inhibition of tobacco bacterial wilt with sulfone derivatives containing an 1,3,4-oxadiazole moiety. J Agric Food Chem 60:1036–1041. https://doi.org/10.1021/jf203772d Zhang J, Peng JF, Bai YB, Wang P, Wang T, Gao JM, Zhang ZT (2016) Synthesis of pyrazolo[1,5-\(a\)]pyrimidine derivatives and their antifungal activities against phytopathogenic fungi in vitro. Mol Divers 20:887–896. https://doi.org/10.1007/s11030-016-9690-y Chen CJ, Song BA, Yang S, Xu GF, Bhadury PS, Jin LH, Hu DY, Li QZ, Liu F, Xue W, Lu P, Chen Z (2007) Synthesis and antifungal activities of 5-(3,4,5-trimethoxyphenyl)-2-sulfonyl-1,3,4-thiadiazole and 5-(3,4,5-trimethoxyphenyl)-2-sulfonyl-1,3,4-oxadiazole derivatives. Bioorg Med Chem 15:3981–3989. https://doi.org/10.1016/j.bmc.2007.04.014