Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tổng hợp các α-aminophosphonates mới dưới sự chiếu xạ vi sóng, đánh giá sinh học với tư cách là tác nhân chống tăng sinh và chất kích thích quá trình apoptosis
Tóm tắt
Việc tổng hợp hai loạt α-aminophosphonates đã được thực hiện bằng phương pháp Chiếu xạ vi sóng (MW), sử dụng phản ứng Kabachnik–Fields một bước. Dựa trên cách tiếp cận hóa học xanh, các phản ứng được thực hiện với ethanole là dung môi duy nhất và không sử dụng chất xúc tác, thời gian phản ứng ngắn (20–40 phút), với năng suất thay đổi. Cả hai loạt chất đều được thử nghiệm để xác định hoạt tính ức chế tăng sinh tế bào trong các dòng tế bào MDA-MB-231, MCF-7 và MCF-10A. Ethyl 4-(((diphenoxyphosphoryl)(4-(diphenylamino)phenyl)methyl)amino)benzoate 4e và diphenyl (((4-(((S)-2-hydroxy-1-phenylethyl)carbamoyl)phenyl)amino)(4-hydroxyphenyl)methyl)phosphonate 6b cho thấy hoạt tính ức chế tăng sinh tế bào chỉ trong dòng tế bào ung thư MCF-7 và không có tác động đến dòng tế bào bình thường MCF-10A, cả hai hợp chất đều gây chết tế bào bằng cách kích thích quá trình apoptosis.
Từ khóa
#α-aminophosphonates #chiếu xạ vi sóng #hoạt tính ức chế tăng sinh tế bào #apoptosis #hóa học xanhTài liệu tham khảo
Abdel-Megeed MF, Badr BE, Azaam MM, El-Hiti GA (2012) Synthesis, antimicrobial and anticancer activities of a novel series of diphenyl 1-(pyridin-3-yl)ethylphosphonates. Bioorg Med Chem 20:2252–2258. https://doi.org/10.1016/j.bmc.2012.02.015
Afshari M, Gorjizadeh M, Naseh M (2017) Supported sulfonic acid on magnetic nanoparticles used as a reusable catalyst for rapid synthesis of α-aminophosphonates. Inorg Nano-Met Chem 47:591–596. https://doi.org/10.1080/15533174.2016.1186096
Avril MF, Aamdal S, Grob JJ et al. (2004) Fotemustine compared with dacarbazine in patients with disseminated malignant melanoma: a phase III study. J Clin Oncol 22:1118–1125. https://doi.org/10.1200/JCO.2004.04.165
Bálint E, Tripolszky A, Tajti Á (2018) 6. Synthesis of α-aminophosphonates by the Kabachnik–Fields reaction and by the Pudovik reaction. In: Keglevich G (ed) Organophosphorus Chemistry. De Gruyter, Berlin, Boston, p 108–147
Berridge MV, Tan AS (1993) Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 303:474–482. https://doi.org/10.1006/abbi.1993.1311
Bhagat S, Chakraborti AK (2007) An extremely efficient three-component reaction of aldehydes/ketones, amines, and phosphites (Kabachnik−Fields reaction) for the synthesis of α-aminophosphonates catalyzed by magnesium perchlorate. J Org Chem 72:1263–1270. https://doi.org/10.1021/jo062140i
Caldwell N, Jamieson C, Simpson I, Watson AJB (2013) Development of a sustainable catalytic ester amidation process. ACS Sustain Chem Eng 1:1339–1344. https://doi.org/10.1021/sc400204g
Deshmukh SU, Kharat KR, Yadav AR et al. (2018) Synthesis of novel α-aminophosphonate derivatives, biological evaluation as potent antiproliferative agents and molecular docking. ChemistrySelect 3:5552–5558. https://doi.org/10.1002/slct.201800798
Fang Y-L, Wu Z-L, Xiao M-W et al. (2016) One-pot three-component synthesis of novel diethyl((2-oxo-1,2-dihydroquinolin-3-yl)(arylamino)methyl)phosphonate as potential anticancer agents. Int J Mol Sci 17:653. https://doi.org/10.3390/ijms17050653
Fischel JL, Barbé V, Berlion M et al. (1993) Tamoxifen enhances the cytotoxic effects of the nitrosourea fotemustine. Results on human melanoma cell lines. Eur J Cancer 29:2269–2273. https://doi.org/10.1016/0959-8049(93)90220-A
Fulda S, Debatin K-M (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25:4798–4811. https://doi.org/10.1038/sj.onc.1209608
Guida M, Tommasi S, Strippoli S et al. (2018) The search for a melanoma-tailored chemotherapy in the new era of personalized therapy: a phase II study of chemo-modulating temozolomide followed by fotemustine and a cooperative study of GOIM (Gruppo Oncologico Italia Meridionale). BMC Cancer 18:552. https://doi.org/10.1186/s12885-018-4479-2
Gundluru M, Sarva S, Kandula MKR et al. (2016) Phosphosulfonic acid-catalyzed green synthesis and bioassay of α-aryl-α ′-1,3,4-thiadiazolyl aminophosphonates. Heteroat Chem 27:269–278. https://doi.org/10.1002/hc.21325
Hosseini-Sarvari M (2008) TiO2 as a new and reusable catalyst for one-pot three-component syntheses of α-aminophosphonates in solvent-free conditions. Tetrahedron 64:5459–5466. https://doi.org/10.1016/j.tet.2008.04.016
Huang X-C, Wang M, Pan Y-M et al. (2013) Synthesis and antitumor activities of novel α-aminophosphonates dehydroabietic acid derivatives. Bioorg Med Chem Lett 23:5283–5289. https://doi.org/10.1016/j.bmcl.2013.08.005
Hudson HR, Lee RJ (2014) A brief review of the anticancer activity of α-aminophosphonic acid derivatives and a report on the in vitro activity of some dialkyl α-aryl- (or Heteroaryl)-α-(diphenylmethylamino)methanephosphonates. Phosphorus Sulfur Silicon Relat Elem 189:1149–1155. https://doi.org/10.1080/10426507.2014.905781
Keglevich G, Bálint E (2012) The kabachnik–fields reaction: mechanism and synthetic use. Molecules 17:12821–12835. https://doi.org/10.3390/molecules171112821
Kenawy E-RS, Azaam MM, Saad-Allah KM (2015) Synthesis and antimicrobial activity of α-aminophosphonates containing chitosan moiety. Arab J Chem 8:427–432. https://doi.org/10.1016/j.arabjc.2013.12.029
Kiseleva LN, Kartashev AV, Vartanyan NL et al. (2018) The effect of fotemustine on human glioblastoma cell lines. Cell Tissue Biol 12:93–101. https://doi.org/10.1134/S1990519X18020025
Kraicheva I, Tsacheva I, Vodenicharova E et al. (2012) Synthesis, antiproliferative activity and genotoxicity of novel anthracene-containing aminophosphonates and a new anthracene-derived Schiff base. Bioorg Med Chem 20:117–124. https://doi.org/10.1016/j.bmc.2011.11.024
Li Y-J, Wang C-Y, Ye M-Y et al. (2015) Novel coumarin-containing aminophosphonatesas antitumor agent: synthesis, cytotoxicity, dna-binding and apoptosis evaluation. Molecules 20:14791–14809. https://doi.org/10.3390/molecules200814791
Maddina VA, Kalyankar MB, Kulkarni PA (2014) One-pot and catalyst-free synthesis of novel α - aminophosphonates under microwave irradiation and their Bioactivity. IOSR J Pharm Biol Sci 9:16–19. https://doi.org/10.9790/3008-09541619
Magedov IV, Manpadi M, Van slambrouck S et al. (2007) Discovery and investigation of antiproliferative and apoptosis-inducing properties of new heterocyclic podophyllotoxin analogues accessible by a one-step multicomponent synthesis. J Med Chem 50:5183–5192. https://doi.org/10.1021/jm070528f
Marinelli A, Lamberti G, Cerbone L et al. (2018) High-dose fotemustine in temozolomide-pretreated glioblastoma multiforme patients. Medicine 97:e11254. https://doi.org/10.1097/MD.0000000000011254
Mirzaei M, Eshghi H, Rahimizadeh M et al. (2015) An eco-friendly three component manifold for the synthesis of α -aminophosphonates under catalyst and solvent-free conditions, X-ray characterization and their evaluation as anticancer agents. J Chin Chem Soc 62:1087–1096. https://doi.org/10.1002/jccs.201500250
Mungara AK, Park Y-K, Lee KD (2012) Synthesis and antiproliferative activity of novel α-aminophosphonates. Chem Pharm Bull 60:1531–1537
Rádai Z, Kiss NZ, Mucsi Z, Keglevich G (2016) Synthesis of α- hydroxyphosphonates and α -aminophosphonates. Phosphorus Sulfur Silicon Relat Elem 191:1564–1565. https://doi.org/10.1080/10426507.2016.1213261
Reddy NB, Sundar CS, Rani CR et al. (2016) Triton X-100 catalyzed synthesis of α-aminophosphonates. Arab J Chem 9:S685–S690. https://doi.org/10.1016/j.arabjc.2011.07.025
Rezaei Z, Firouzabadi H, Iranpoor N et al. (2009) Design and one-pot synthesis of α-aminophosphonates and bis(α-aminophosphonates) by iron(III) chloride and cytotoxic activity. Eur J Med Chem 44:4266–4275. https://doi.org/10.1016/j.ejmech.2009.07.009
Rezaei Z, Khabnadideh S, Zomorodian K et al. (2011) Design, synthesis, and antifungal activity of new α-aminophosphonates. Int J Med Chem 2011:1–11. https://doi.org/10.1155/2011/678101
Riss TL, Moravec RA, Niles AL et al. (2016) Cell viability assays. In Assay Guidance Manual [Internet eBook]. Eli Lilly & Company and the National Center for Advancing Translational Sciences. http://www.ncbi.nlm.nih.gov/books/NBK144065/
Sampath C, Harika P, Revaprasadu N (2016) Design, green synthesis, anti-microbial, and anti-oxidant activities of novel α -aminophosphonates via Kabachnik-Fields reaction. Phosphorus Sulfur Silicon Relat Elem 191:1081–1085. https://doi.org/10.1080/10426507.2015.1035379
Subba Reddy G, Maheswara Rao KU, Syama Sundar C et al. (2014) Neat synthesis and antioxidant activity of α-aminophosphonates. Arab J Chem 7:833–838. https://doi.org/10.1016/j.arabjc.2013.01.004
Tiwari S, Sharif N, Gajare R et al. (2018) New 2-oxoindolin phosphonates as novel agents to treat cancer: a green synthesis and molecular modeling. Molecules 23:1981. https://doi.org/10.3390/molecules23081981
Venkata Ramana K, Rasheed S, Chandra Sekhar K et al. (2012) One-pot and catalyst-free synthesis of novel α-aminophosphonates under microwave irradiation and their biological activity. Der Pharm Lett 4:456–463
Wu J, Duan L, Zhang L et al. (2018) Fotemustine, teniposide and dexamethasone versus high-dose methotrexate plus cytarabine in newly diagnosed primary CNS lymphoma: a randomised phase 2 trial. J Neurooncol 140:427–434. https://doi.org/10.1007/s11060-018-2970-x
Xia M, Lu Y (2007) Ultrasound-assisted one-pot approach to α-amino phosphonates under solvent-free and catalyst-free conditions. Ultrason Sonochem 14:235–240. https://doi.org/10.1016/j.ultsonch.2006.04.006
Ye M-Y, Yao G-Y, Pan Y-M et al. (2014) Synthesis and antitumor activities of novel α-aminophosphonate derivatives containing an alizarin moiety. Eur J Med Chem 83:116–128. https://doi.org/10.1016/j.ejmech.2014.02.067