Synthesis of new dinuclear dicopper(II) and dinickel(II) complexes. The kinetics of catechol oxidase and electrochemistry of a dicopper(II) complex
Tóm tắt
A new dinuclear ligand L′, ethylene[OO′-bis-salicylidene-β-diketone] bearing two symmetrical coordination sites was synthesized by the condensation of salicylaldehyde and acetylacetone, L, with 1,2-dibromoethane under reflux. The ligand L′ in a 1:1 ratio was treated with CuCl2 and NiCl2 to yield the complexes, tetrachloro bis[OO′-bis- salicylidene-β-diketone copper(II)] and bis[OO′-bis-salicylidene-β-diketone nickel(II)] chloride. The complexes were subsequently characterized by spectroscopic techniques, elemental analysis, i.r., 1H-n.m.r., 13C-n.m.r., u.v.–vis., e.p.r. spectroscopy, and conductance measurements. The conductance measurements in DMF reveal that the CuII complex is covalent while the NiII complex is ionic and the spectral data support the CuII complex to be distorted octahedral whereas the NiII complex has square-planar geometry.
The dioxygen binding was studied spectrophotometrically by the oxidation of tetrachloro bis[OO′-bis-salicylidene-β-diketone copper(II)] with pyrocatechol in the presence of oxygen. The kinetic experiments were performed with the copper complex in DMF by monitoring the increase in absorbance over time at pH 8.0 in the presence of pyrocatechol at 25 °C. The kinetic parameters Vmax and KM were determined on the Michaelis–Menten Approach.
Redox behavior of the dinuclear copper(II) complex was investigated by cyclic voltammetry in the presence of O2 with the pyrocatechol (substrate) and also without the substrate. The large difference in potentials E0 is indicative of reversible oxygen binding of the complex and distinct catalytic activity.
Tài liệu tham khảo
M.J. Henson E.I. Solomon (2000) Chemtracts-Inorg. Chem. 13 97
S.J. Lippard (1988) Angew. Chem.; Int. Ed. Engl. 27 344
J.A. Ibers R.H. Holm (1980) Science (Washington, DC) 209 223
L. Que. Jr. and R.C. Scarrow, Metal Clusters in Proteins, ACS Symposium Series 372; American Chemical Society: Washington, DC, 1988, p. 159.
M. Reglier, C. Jorand and B. Waegell, J. Chem. Soc. Chem. Commun., 1752 (1990).
K.D. Karlin, P.L. Dahlstrom, S.N. Cozzette, P.M. Scensny and J. Zubieta, J. Chem. Soc., Chem. Commun., 881 (1981).
K.D. Karlin J.C. Hayes Y. Gultneh R.W. Cruse J.W. Mckown J.P. Hutchinson J. Zubieta (1984) J. Am. Chem. Soc. 106 2121
K.D. Karlin and A. D. Zuberbuhler, Bioinorganic Catalysis, 2nd Edit., (Revised and Expanded), in J. Reedijk and E. Bouwman, Marcel Dekker (Eds.) New York, 469 (1999).
M.A. Kopf K.D. Karlin (2000) NoChapterTitle B. Meunier (Eds) Biomimetic Oxidations Imperial College Press London 309
E.I. Solomon U.M. Sundaram T.E. Machonkin (1996) Chem. Rev. 96 2563
J.P. Klinman (1996) Chem. Rev. 96 2541
O. Kahn (1993) Molecular Magnetism VCH Publishers New York
J.S. Miller M. Drillon (Eds) (2001) Magnetism:Molecules to Materials Wiley-VCH Germany
C.X. Zhang S. Kaderli M. Costas Eun-il Kim Y.M. Neuhold K.D. Karlin A. D. Zuberbuhler (2003) Inorg. Chem. 42 1807
A. Diehold A. Elbouadili K.S. Hagen (2000) Inorg. Chem. 39 3915
W. Plass J.G. Verkade (1992) J. Am. Chem. Soc. 114 2275
D.A. Evans T. Rovis M.C. Kozlowski C.W. Downey J.S. Tedrow (2000) J. Am. Chem. Soc. 122 9134
E.N. Jacobsen (2000) Acc. Chem. Res. 33 421
M. Suzuki H. Furutachi H. Okawa (2000) Coord. Chem. Rev. 200–202 105
C.X. Zhang, C.H. Liang, K.J. Humphreys and K.D. Karlin, in L.I. Simandi (Ed) Advances in Catalytic Activation of Dioxygen by Metal Complexes ; in B.R. James, P.W.N.M. Van Leeuwen (Eds.) Catalysis by Metal Complexes, Kluwer, Dordrecht, Boston, London, 2003, Vol. 26, Chap. 2, p. 79.
R.C. Mehrota R. Bohra D.P. Gaur (1978) Metal β-diketonates and Allied Derivatives Academic press San Francisco, CA
B.K. Keppler (1990) New. J. Chem. 14 403
T.N. Sorrell (1989) Tetrahedron. 45 3
P.A. Vigato S. Tamburini D. Fenton (1990) Coord. Chem. Rev. 106 25
N. Kitajima (1992) Adv. Inorg. Chem. 39 1
M. Reglier, C. Jorand and B. Waegell, J. Chem. Soc. Chem. Commun., 1752 (1990).
A. Neves L.M. Rossi A.J. Bortoluzzi B. Szpoganicz (2002) C. Wiezbicki and E. Schwingel , W. Haase and S. Ostrovsky, Inorg. Chem. 41 1788
S. Srinivasan P. Athappan G. Rajagopal (2001) Transition Met. Chem. 26 588
K. Nakamoto (1978) The Infrared Spectra of Inorganic and Coordination Compounds EditionNumber3 Wiley interscience New York
L. Tian B. Zhao Z. Zhou Q. Yu W. Yu (2002) Synth. React. Inorg. Met. Org. Chem. 32(5) 939
B.N. Figgis J. Lewis (1964) Prog. Inorg. Chem. 37 37
I.M. Procter, B.J. Hathaway and P. Nicholls, J. Chem. Soc., A, 1678 (1968).
A.A.G. Tomilson, B.J. Hathaway, D.E. Billing and P. Nicholls, J. Chem. Soc., A, 65 (1965)
S.N. Choi E.R. Menzel J.R. Wasson (1977) J. Inorg. Nucl. Chem. 39 417
A.B.P. Lever (1968) Inorganic Electronic spectroscopy Elsevier Amsterdam 350
S. Chandra S.D. Sharma (2002) Transition Met. Chem. 27 732
R.H. Tomson (1971) Naturally Ocurring Quinones EditionNumber2 Academic Press London and New York 43
S.R. Copper Y.B. Kon K.N. Raymond (1982) J. Am. Chem. Soc. 104 5092