Synthesis of metallic aluminum particles by electrolysis in aqueous solution

Takefumi Hosoya1, Tadashi Yonezawa2, Noriko Yamauchi1, Kouichi Nakashima1, Yoshio Kobayashi1
1Department of Materials Science and Engineering, Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Naka-narusawa-cho, Hitachi, Ibaraki 316-8511, Japan
2Central Research Institute, Mitsubishi Materials Corporation, 1002-14 Mukohyama, Naka, Ibaraki 311-0102, Japan

Tóm tắt

AbstractThe present work proposes a method for fabricating metallic Al particles in aqueous solution. An aqueous colloidal solution was prepared from an aqueous aluminum nitrate nonahydrate solution by electrolysis using metallic Al plates as the anode and cathode under ultrasonic irradiation in water at 25–45 °C. The sizes of the particles in the colloidal solutions prepared at 25, 35, and 45 °C were 76.3, 77.0, and 84.7 nm, respectively. The powder obtained from the colloidal solution prepared at 25 °C was not crystalline. By contrast, the powders obtained from the colloidal solutions prepared at 35 and 45 °C had a crystal structure of cubic Al and crystal sizes of 55.7 and 59.3 nm, respectively. Thus, elevated temperatures promoted both particle growth and crystal growth, which was explained by higher temperatures increasing the frequency and energy of particle collisions. The metallic Al particles were chemically stable in both an aqueous solution and the ambient atmosphere. The chemically stable metallic Al particles are expected to be used as sources for fabricating materials related to fuels, energy storage, and pigments.

Từ khóa


Tài liệu tham khảo

Serra-Maia R, Chastka S, Bellier M, Douglas T, Rimstidt JD, Michel FM (2019) Effect of particle size on catalytic decomposition of hydrogen peroxide by platinum nanocatalysts. J Catal 373:58–66

Sharma P, Semwal V, Gupta BD (2019) A highly selective LSPR biosensor for the detection of taurine realized on optical fiber substrate and gold nanoparticles. Opt Fiber Technol 52:101962

Munir T, Mahmood A, Imran M, Sohail A, Fakhar-e-Alam M, Sharif M, Masood T, Bajwa SZ, Shafiq F, Latif S (2021) Quantitative analysis of glucose by using (PVP and MA) capped silver nanoparticles for biosensing applications. Phys B 602:412564

Pourmortazavi SM, Hajimirsadeghi SS, Kohsari I, Fathollahi M, Hosseini SG (2008) Thermal decomposition of pyrotechnic mixtures containing either aluminum or magnesium powder as fuel. Fuel 87:244–251

Bunker CE, Smith MJ, Fernando KAS, Harruff BA, Lewis WK, Gord JR, Guliants EA, Phelps DK (2010) Spontaneous hydrogen generation from organic-capped Al nanoparticles and water. ACS Appl Mater Interfaces 2:11–14

Karlsson PM, Baeza A, Palmqvist AEC, Holmberg K (2008) Surfactant inhibition of aluminium pigments for waterborne printing inks. Corr Sci 50:2282–2287

Kwon YS, Gromov AA, Ilyin AP, Rim GH (2003) Passivation process for superfine aluminum powders obtained by electrical explosion of wires. Appl Surf Sci 211:57–67

Ishihara S, Suematsu H, Nakayama T, Suzuki T, Niihara K (2012) Synthesis of nanosized alumina powders by pulsed wire discharge in air flow atmosphere. Ceram Int 38:4477–4484

Mandilas C, Daskalos E, Karagiannakis G, Konstandopoulos AG (2013) Synthesis of aluminium nanoparticles by arc plasma spray under atmospheric pressure. Mater Sci Eng B 178:22–30

Mathe VL, Varma V, Raut S, Nandi AK, Pant A, Prasanth H, Pandey RK, Bhoraskar SV, Das AK (2016) Enhanced active aluminum content and thermal behaviour ofnano-aluminum particles passivated during synthesis using thermal plasma route. Appl Surf Sci 368:16–26

Lerner MI, Glazkova EA, Lozhkomoev AS, Svarovskaya NV, Bakina OV, Pervikov AV, Psakhie SG (2016) Synthesis of Al nanoparticles and Al/AlN composite nanoparticles by electrical explosion of aluminum wires in argon and nitrogen. Powder Technol 295:307–314

Abdelkader EM, Jelliss PA, Buckner SW (2016) Main group nanoparticle synthesis using electrical explosion of wires. Nano-Struct Nano-Obj 7:23–31

Yi Z, Xu X, Luo J, Li X, Yi Y, Jiang X, Yi Y, Tang Y (2014) Size controllable synthesis of ultrafine spherical gold particles and their simulation of plasmonic and SERS behaviors. Phys B 438:22–28

Huff C, Biehler E, Quach Q, Long JM, Abdel-Fattah TM (2021) Synthesis of highly dispersive platinum nanoparticles and their application in a hydrogen generation reaction. Colloids Surf A 610:125734

Liu T, Li D, Yang D, Jiang M (2011) Size controllable synthesis of ultrafine silver particles through a one-step reaction. Mater Lett 65:628–631

Nie H, Schoenitz M, Dreizin EL (2012) Calorimetric investigation of the aluminum-water reaction. Int J Hydrog Energy 37:11035–11045

Ghanta SR, Muralidharan K (2013) Chemical synthesis of aluminum nanoparticles. J Nanopart Res 15:1715

Cui Y, Zhao S, Tao D, Liang Z, Huang D, Xu Z (2014) Synthesis of size-controlled and discrete core-shell aluminum nanoparticles with a wet chemical process. Mater Lett 121:54–57

Falola BD, Suni II (2015) Low temperature electrochemical deposition of highly active elements. Curr Opin Solid State Mater Sci 19:77–84

Pereira NM, Pereira CM, Araujo JP, Silva AF (2017) Zinc electrodeposition from deep eutectic solvent containing organic additives. J Electroanal Chem 801:545–551

Yapontseva YS, Kublanovsky VS, Vyshnevskyi OA (2018) Electrodeposition of CoMoRe alloys from a citrate electrolyte. J Alloys Compd 766:894–901

Wang X, Han Y, Zhang J, Li Z, Li T, Zhao X, Liu W (2019) Influence of electropolished copper substrate on morphology of electroplating self-supporting Ni films. Nucl Instrum Meth Phys Res A 927:343–348

Lee H, Tsai ST, Wu PH, Dow WP, Chen CM (2019) Influence of additives on electroplated copper films and their solder joints. Mater Charact 147:57–63

Shavkunov SP, Strugova TL (2003) Electrode processes during aluminum electrodeposition in aromatic solvents. Russ J Electrochem 39:642–649

Jiang T, Chollier Brym MJ, Dubé G, Lasia A, Brisard GM (2007) Studies on the AlCl3/dimethylsulfone (DMSO2) electrolytes for the aluminum deposition processes. Surf Coat Technol 201:6309–6317

Yue G, Lu X, Zhu Y, Zhang X, Zhang S (2009) Surface morphology, crystal structure and orientation of aluminium coatings electrodeposited on mild steel in ionic liquid. Chem Eng J 147:79–86

Shen Q, Min Q, Shi J, Jiang L, Hou W, Zhu JJ (2011) Synthesis of stabilizer-free gold nanoparticles by pulse sonoelectrochemical method. Ultrason Sonochem 18:231–237

Zin V, Pollet BG, Dabalà M (2009) Sonoelectrochemical (20 kHz) production of platinum nanoparticles from aqueous solutions. Electrochim Acta 54:7201–7206

Zhu J, Liu S, Palchik O, Koltypin Y, Gedanken A (2000) Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods. Langmuir 16:6396–6399

Abedin SZE, Moustafa EM, Hempelmann R, Natter H, Endres F (2005) Additive free electrodeposition of nanocrystalline aluminium in a water and air stable ionic liquid. Electrochem Commun 7:1111–1116

Mahendiran C, Ganesan R, Gedanken A (2009) Sonoelectrochemical synthesis of metallic aluminum nanoparticles. Eur J Inorg Chem. https://doi.org/10.1002/ejic.200900097

Cvetković VS, Vukićević NM, Jovićević N, Stevanović JS, Jovićević JN (2020) Aluminium electrodeposition under novel conditions from AlCl3-urea deep eutectic solvent at room temperature. Trans Nonferrous Met Soc China 30:823–834

Liang L, Guo X, Liao X, Chang Z (2020) Improve the interfacial adhesion, corrosion resistance and combustion properties of aluminum powder by modification of nickel and dopamine. Appl Surf Sci 508:144790

Rai A, Park K, Zhou L, Zachariah MR (2006) Understanding the mechanism of aluminium nanoparticle oxidation. Combust Theory Model 10:843–859

Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications. Wiley, New York