Tổng hợp carbon nitride xốp bằng phương pháp khuôn aerogel silica hỗ trợ muối nóng chảy cho việc hấp thụ và phân hủy photocatalytic Rhodamine B

Journal of Materials Science - Tập 56 - Trang 11248-11265 - 2021
Zheng Liu1,2, Xiao He1,2, Xingjin Yang2, Hekun Ding2, Dongbo Wang2, Dachao Ma2, Qingge Feng1,2
1Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, China
2School of Resources, Environment and Materials, Guangxi University, Nanning, China

Tóm tắt

Là một vật liệu photocatalysis phi kim loại mới, việc phát triển carbon nitride (g-C3N4) với cấu trúc và tính chất quang học tốt được rất nhiều sự chú ý. Trong nghiên cứu này, g-C3N4 xốp đã được chuẩn bị bằng phương pháp khuôn aerogel silica (SiO2) hỗ trợ muối nóng chảy. Các tính chất vật lý, hóa học và quang học được xác định thông qua phân tích nhiễu xạ tia X (XRD), phổ hồng ngoại biến đổi Fourier (FT-IR), diện tích bề mặt riêng và phân tích lỗ rỗng, kính hiển vi điện tử quét (SEM), kính hiển vi điện tử truyền dẫn độ phân giải cao (HRTEM), phổ năng lượng tia X (XPS), phổ phản xạ tán xạ, phổ phát quang (PL) và điện thế zeta. Rhodamine B (RhB) được sử dụng cho một loạt các thí nghiệm hấp thụ và phân hủy photocatalytic, và các loài phản ứng cũng như mức độ phân hủy RhB trong quá trình phản ứng được kiểm tra thông qua cộng hưởng spin electron (ESR) và phổ hấp thụ UV-VIS. Hiệu ứng tương hỗ giữa hấp thụ và phân hủy photocatalytic được nghiên cứu. Kết quả cho thấy g-C3N4 xốp đã được tổng hợp thành công, với cấu trúc ống rỗng và tính chất quang học tốt. Với diện tích bề mặt riêng cao nhất (164,65 m2·g−1) và độ chênh lệch băng tần hẹp hơn (2,47 eV), mẫu M-CN-500 cho thấy tỷ lệ phân hủy RhB cao nhất (90,9%) sau 150 phút chiếu sáng, và khả năng hấp thụ cùng điện thế zeta đều bị ảnh hưởng bởi sự thay đổi pH. Mô hình động học xác nhận rằng tỷ lệ phân hủy photocatalytic của RhB bằng g-C3N4 xốp được cải thiện nhờ hiệu ứng đồng hợp tác của việc hấp thụ. Nó cũng cho thấy rằng O2− và h+ là những loài phản ứng chính, và sự gãy cấu trúc RhB là nguyên nhân chính trong quá trình phân hủy photocatalytic. G-C3N4 xốp được tổng hợp từ phương pháp khuôn aerogel silica (SiO2) hỗ trợ muối nóng chảy, và hiệu ứng tương hỗ giữa hấp thụ và phân hủy photocatalytic của xúc tác này cũng được nghiên cứu. Nhờ vào cấu trúc ống rỗng đặc biệt và tính xốp cao, g-C3N4 xốp với diện tích bề mặt riêng cao không chỉ cải thiện hiệu suất hấp thụ mà còn nâng cao hiệu quả photocatalytic.

Từ khóa

#carbon nitride #xốp #photocatalytic #adsorption #phân hủy #Rhodamine B

Tài liệu tham khảo

Pang JB, Mendes RG, Bachmatiuk A, Zhao L, Ta HQ, Gemming T, Liu H, Liu ZF et al (2019) Applications of 2D MXenes in energy conversion and storage systems. Chem Soc Rev 48:72–133 Zhang LL, Xiong ZG, Zhao XS (2010) Pillaring chemically exfoliated graphene oxide with carbon nanotubes for photocatalytic degradation of dyes under visible light irradiation. ACS Nano 4:7030–7036 Li HQ, Liu YX, Gao X, Fu C, Wang XC (2015) Facile synthesis and enhanced visible-light photocatalysis of graphitic carbon nitride composite semiconductors. ChemSusChem 8:1189–1196 Du AJ, Sanvito S, Li Z, Wang DW, Jiao Y, Liao T, Sun Q, Ng YH et al (2012) Hybrid graphene and graphitic carbon nitride nanocomposite: gap opening, electron-hole puddle, interfacial charge transfer, and enhanced visible light response. J Am Chem Soc 134:4393–4397 Ding ZX, Chen XF, Antonietti M, Wang XC (2011) Synthesis of transition metal-modified carbon nitride polymers for selective hydrocarbon oxidation. ChemSusChem 4:274–281 Ge L, Han CC, Liu J, Li YF (2011) Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles. Appl Catal A-Gen 409:215–222 Hou JH, Lei YG, Wang F, Ma XH, Min SX, Jin ZL, Xu J (2017) In-situ photochemical fabrication of transition metal-promoted amorphous molybdenum sulfide catalysts for enhanced photosensitized hydrogen evolution. Int J Hydrogen Energy 42:11118–11129 Chen WH, Zhou ZX, Luo GF, Neumann E, Marjault HB, Stone D, Nechushtai R, Willner I (2019) Photosensitized H2 evolution and NADPH formation by photosensitizer/carbon nitride hybrid nanoparticles. Nano Lett 19:9121–9130 Baran T, Wojtyła S, Minguzzi A, Rondinini S, Vertova A (2019) Achieving efficient H2O2 production by a visible-light absorbing, highly stable photosensitized TiO2. Appl Catal B-Environ 244:303–312 Tian L, Li JY, Liang F, Wang JK, Li SS, Zhang HJ, Zhang SW (2018) Molten salt synthesis of tetragonal carbon nitride hollow tubes and their application for removal of pollutants from wastewater. Appl Catal B-Environ 225:307–313 Liu J, Wang HQ, Antonietti M (2016) Graphitic carbon nitride “reloaded”: emerging applications beyond (photo)catalysis. Chem Soc Rev 45:2308–2326 Li XB, Zhang HS, Huang JT, Luo JM, Feng ZJ, Wang XF (2017) Folded nano-porous graphene-like carbon nitride with significantly improved visible-light photocatalytic activity for dye degradation. Ceram Int 43:15785–15792 Shu Z, Wang Y, Wang WB, Zhou J, Li TT, Liu XQ, Tan YG, Zhao ZL (2019) A green one-pot approach for mesoporous g-C3N4 nanosheets with in situ sodium doping for enhanced photocatalytic hydrogen evolution. Int J Hydrogen Energ 44:748–756 Wang YF, Guo H, Luo XD, Liu X, Hu ZZ, Han L, Zhang ZQ (2019) Nonsiliceous mesoporous materials: design and applications in energy conversion and storage. Small 15:1805277. https://doi.org/10.1002/smll.201805277 Obregón S, Vázquez A, Ruíz-Gómez MA, Rodríguez-González V (2019) SBA-15 assisted preparation of mesoporous g-C3N4 for photocatalytic H2 production and Au3+ fluorescence sensing. Appl Surf Sci 488:205–212 Chen CB, Li CX, Zhang YJ, Wang YJ, Lu JY, Liu HQ, Li WW (2018) Cyano-rich mesoporous carbon nitride nanospheres for visible-light-driven photocatalytic degradation of pollutants. Environ Sci-Nano 5:2966–2977 Qu XY, Hu SZ, Bai J, Li P, Lu G, Kang XX (2018) Synthesis of band gap-tunable alkali metal modified graphitic carbon nitride with outstanding photocatalytic H2O2 production ability via molten salt method. J Mater Sci Technol 34:1932–1938 Feng QG, Chen K, Ma DC, Lin HY, Liu Z, Qin SY, Luo YW (2018) Synthesis of high specific surface area silica aerogel from rice husk ash via ambient pressure drying. Colloid Surface A 539:399–406 Wu SH, Mou CY, Lin HP (2013) Chemlnform abstract: synthesis of mesoporous silica nanoparticles. Chem Soc Rev 42:3862–3875 Liu S, Gao S, Fei T, Zhang T (2019) Highly sensitive and selective dopamine detection utilizing nitrogen-doped mesoporous carbon prepared by a molten glucose-assisted hard-template approach. ChemPlusChem 84:845–852 Hayeeye F, Sattar M, Chinpa W, Sirichote O (2017) Kinetics and thermodynamics of Rhodamine B adsorption by gelatin/activated carbon composite beads. Colloid Surf A 513:259–266 Chang XM, Yao XL, Ding N, Yin XF, Zheng QM, Lu SL, Shuai DM, Sun YX (2019) Photocatalytic degradation of trihalomethanes and haloacetonitriles on graphitic carbon nitride under visible light irradiation. Sci Total Environ 682:200–207 Luo YD, Wei XQ, Gao B, Zou WX, Zheng YL, Yang YC, Zhang Y, Tong Q et al (2019) Synergistic adsorption-photocatalysis processes of graphitic carbon nitrate (g-C3N4) for contaminant removal: kinetics, models, and mechanisms. Chem Eng J 375:122019. https://doi.org/10.1016/j.cej.2019.122019 Wang Y, Liu C, Fang Y, Liu XL, Li WT, Liu SQ (2012) Transcription analysis on response of porcine alveolar macrophages to Haemophilus parasuis. BMC Genomics 13:68. https://doi.org/10.1186/1471-2164-13-68 Wang YP, Li YK, Ju W, Wang JC, Yao HC, Zhang L, Wang JS, Li ZJ (2016) Molten salt synthesis of water-dispersible polymeric carbon nitride nanoseaweeds and their application as luminescent probes. Carbon 102:477–486 Shvalagin VV, Korzhak GV, Kuchmiy SY, Skoryk MA, Selyshchev OV, Zahn DRT (2019) Facile preparation and high photocatalytic activity of crystalline graphitic carbon nitride in hydrogen evolution from electron donor solutions under visible light. J Photoch Photobio A 390:112295. https://doi.org/10.1016/j.jphotochem.2019.112295 Zhang GG, Lin LH, Li GS, Zhang YF, Savateev A, Zafeiratos S, Wang XC, Antonietti M (2018) Ionothermal Synthesis of Triazine-Heptazine-Based Copolymers with Apparent Quantum Yields of 60% at 420 nm for Solar Hydrogen Production from “Sea Water”. Angew Chem Int Edit 57:9372–9376 Wang YB, Meng D, Zhao X (2020) Visible-light-driven H2O2 production from O2 reduction with nitrogen vacancy-rich and porous graphitic carbon nitride. Appl Catal B-Environ 273:119064. https://doi.org/10.1016/j.apcatb.2020.119064 Chen YL, He XC, Guo DS, Cai YQ, Chen JL, Zheng Y, Gao BF, Lin BZ (2020) Supramolecular electrostatic self-assembly of mesoporous thin-walled graphitic carbon nitride microtubes for highly efficient visible-light photocatalytic activities. J Energy Chem 49:214–223 Li XL, Bai JF, Li JQ, Li C, Zhang JR, Deng SP (2020) Preparation of nitrogen-deficient graphitic carbon nitride with a large specific surface area by melt pretreatment and its photocatalytic performance. NANO 15:2050079. https://doi.org/10.1142/S1793292020500794 Zhang L, Liu QG, Chai YY, Dai WL (2018) Facile construction of phosphate incorporated graphitic carbon nitride with mesoporous structure and superior performance for H2 production. Int J Hydrogen Energ 43:5591–5602 Zhou H, Shen YQ, Huang J, Liao B, Wu XY, Zhang X (2018) Preparation of mesoporous carbon nitride structure by the dealloying of Ni/a-CN nanocomposite films. Appl Surf Sci 440:448–457 Ye LQ, Wu D, Chu KH, Wang B, Xie HQ, Yip HY, Wong PK (2016) Phosphorylation of g-C3N4 for enhanced photocatalytic CO2 reduction. Chem Eng J 304:376–383 Zhang L, Cui YY, Yang FL, Zhang Q, Zhang JH, Cao MT, Dai WL (2020) Electroless-hydrothermal construction of nickel bridged nickel sulfide@mesoporous carbon nitride hybrids for highly efficient noble metal-free photocatalytic H2 production. J Mater Sci Technol 45:176–186 Ma HX, Jia YF, Zhu GQ, Zhang FC, Rhee S, Lee B, Liu CL (2019) Study of cyano and hydroxyl groups modification on the properties of porous carbon nitride synthesized by using a salt assistant method. Appl Surf Sci 507:144885. https://doi.org/10.1016/j.apsusc.2019.144885 Chen YL, He XC, Guo DS, Cai YQ, Chen JL, Zheng Y, Gao BF, Lin BZ (2020) Supramolecular electrostatic self-assembly of mesoporous thin-walled graphitic carbon nitride microtubes for highly effiffifficient visible-light photocatalytic activities. J Energy Chem 49:214–223 Bai JR, Wang ZL, Zhou P, Xu P, Deng YY, Zhou QF (2021) Rapid thermal surface engineering of g-C3N4 for efficient hydrogen evolution. Appl Surf Sci 539:148308. https://doi.org/10.1016/j.apsusc.2020.148308 Zhang XD, Wang HX, Wang H, Zhang Q, Xie JF, Tian YP, Wang J, Xie Y (2014) Single-layered graphitic-C3N4 quantum dots for two-photon fluorescence imaging of cellular nucleus. Adv Mater 26:4438–4443 Li CM, Yu SY, Dong HJ, Wang Y, Wu HJ, Zhang XX, Chen G, Liu CB (2018) Mesoporous ferriferrous oxide nanoreactors modifified on graphitic carbon nitride towards improvement of physical, photoelectrochemical properties and photocatalytic performance. J Colloid Interf Sci 531:331–342 Liu JY, Xu H, Xu YG, Song YH, Lian JB, Zhao Y, Wang L, Huang L et al (2017) Graphene quantum dots modifified mesoporous graphite carbon nitride with signifificant enhancement of photocatalytic activity. Appl Catal B-Environ 207:429–437 Fan GD, Ning RS, Yan ZS, Luo J, Du BH, Zhan JJ, Liu LS, Zhang J (2020) Double photoelectron-transfer mechanism in Ag-AgCl/WO3/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity for trimethoprim degradation. J Hazard Mater 403:123964. https://doi.org/10.1016/j.jhazmat.2020.123964 Danish M, Muneer M (2021) Facile synthesis of highly efficient Co@ZnSQDs/g-C3N4/MWCNT nanocomposites and their photocatalytic potential for the degradation of RhB dye: Efficiency, degradation kinetics, and mechanism pathway. Ceram Int 47:13043–13056 Bera KK, Chakraborty M, Mondal M, Banik S, Bhattacharya SK (2020) Synthesis of α-β Bi2O3 heterojunction photocatalyst and evaluation of reaction mechanism for degradation of RhB dye under natural sunlight. Ceram Int 46:7667–7680 Yao CH, Wang XJ, Zhao W, Li TF, He YL, Ran X, Guo LJ (2020) Probing the facet-dependent intermediate in the visible-light degradation of RhB by carbon-coated anatase TiO2 nanoparticles. J Alloy Compd 846:156335. https://doi.org/10.1016/j.jallcom.2020.156335 Wang Q, Chen CC, Zhao D, Ma WH, Zhao JC (2008) Change of adsorption modes of dyes on fluorinated TiO2 and its effect on photocatalytic degradation of dyes under visible irradiation. Langmuir 24:7338–7345 Wu TX, Liu GM, Zhao JC, Hidaka H, Serpone N (1998) Photoassisted degradation of dye pollutants. V. self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J Phys Chem B 102:5845–5851 Zhuang JD, Dai WX, Tian QF, Li ZH, Xie LY, Wang JX, Liu P, Shi XC et al (2010) Photocatalytic degradation of RhB over TiO2 bilayer films: effect of defects and their location. Langmuir 26:9686–9694