Synthesis of iron substituted zeolite with Na-P1 framework
Tóm tắt
Zeolites with substitution by transition metals are expected to have unique catalytic properties in addition to common cation exchange abilities, but studies on the synthesis of iron-substituted zeolites with a greater cation exchange capacity (CEC) are very few. We hydrothermally synthesized iron-substituted Na-P1 type zeolites having CEC values of >300 cmolc kg−1 with iron content of up to 90 cmolc kg−1 with changing the addition of iron. Most of the iron in the products was concluded to be incorporated into the structure of Na-P1 by substituting aluminum, because measured CEC value and the content of sodium (exchangeable cation) nearly coincided with the sum of aluminum and iron contents in each product. In addition, UV–Visible diffuse reflectance spectra of the products revealed characteristic bands of isolated tetrahedral iron species and Fourier Transform Infrared spectroscopy (FT-IR) results indicated the existence of Si-O-Fe bonds in the products. These results confirmed the substitution of iron in the framework of Na-P1 by a hydrothermal synthesis in a short time.
Tài liệu tham khảo
M.E. Davis, Microporous Mesoporous. Mater. 21, 173 (1998)
J. Weitkamp, Solid State Ionics 131, 175 (2000)
S.E. Bailey, T.J. Olin, R.M. Bricka, D.D. Adrian, Water Res. 33(11), 2469 (1999)
E. Erdem, N. Karapinar, R. Donat, J. Colloid Interf. Sci. 280, 309 (2004)
L.G.A. van de Water, J.C. van der Waal, J.C. Jansen, M. Cadoni, L. Marchese, T. Maschmeyer, J. Phys. Chem. B 107, 10423 (2003)
R. Fricke, H. Kosslick, G. Lischke, M. Richter, Chem. Rev. 100, 2303 (2000)
P. Ratnasamy, R. Kumar, Catal. Today 9(4), 329 (1991)
M. Tamura, W. Chaikittisilp, T. Yokoi, T. Okubo, Microporous Mesoporous. Mater. 112, 202 (2008)
G. Centi, S. Perathoner, F. Trifiró, A. Aboukais, C.F. Aïssi, M. Guelton, J. Phys. Chem-US 96, 2617 (1992)
K. Na, C. Jo, J. Kim, W.S. Ahn, R. Ryoo, ACS Catal. 1, 901 (2011)
K. Chalupka, C. Thomas, Y. Millot, F. Averseng, S. Dzwigaj, J. Catal. 305, 46 (2013)
J.H. Yun, R.F. Lobo, J. Catal. 312, 263 (2014)
A. Ribera, I.W.C.E. Arends, S. de Vries, J. Pérez-Ramírez, R.A. Sheldon, J. Catal. 195, 287 (2000)
E.J.M. Hensen, Q. Zhu, R.A.J. Janssen, P.C.M.M. Magusin, P.J. Kooyman, R.A. van Santen, J. Catal. 233, 123 (2005)
R. Szostak, T.L. Thomas, J. Chem. Soc., Chem. Commun. 2, 113 (1986)
K. Katsuki, S. Yoneoka, N. Mori, M. Hasegawa, Y. Yamamoto, Y. Yoshino, J. Porous Mater. 15, 35 (2008)
C.V.A. Duke, K. Latham, C.D. Williams, Zeolites 15, 213 (1995)
P. Ratnasamy, A.N. Kotasthane, V.P. Shiralkar, A. Thangaraj, S. Ganapathy, in ACS Symposium Series 398, ed. by M.L. Occelli, H.E. Robson (American Chemical Society, Washington, D.C., 1989), p. 405
R. Kumar, A. Raj, S.B. Kumar, P. Ratnasamy, Stud. Surf. Sci. Catal. 84, 109 (1994)
S. Hansen, Acta Crystallogr. C 46, 1361 (1990)
U. Håkansson, L. Fälth, Acta Crystallogr. C 46, 1363 (1990)
B.R. Albert, A.K. Cheetham, J.A. Stuart, C.J. Adams, Microporous Mesoporous. Mater. 21, 133 (1998)
P. Sharma, J.-S. Song, M.H. Han, C.H. Cho, Sci. Rep. (2016). doi:10.1038/srep22734
M. Maldonado, M.D. Oleksiak, S. Chinta, J.D. Rimer, J. Am. Chem. Soc. 135, 2641 (2013)
M.L. Jackson, Soil Chemical Analysis Advanced Course (University of Wisconsin, Madison, 1956), pp. 47–58
K. Katsuki, M. Okamoto, E. Ichikawa, A. Iwashina, S. Koike, Y. Yamamoto, T. Takeuchi, Y. Yoshino, Nippon Kagaku Kaishi 9, 689 (1995) (Japanese)
Ch. Baerlocher, W.M. Meier, Z. Kristallogr. Cryst. Mater. 135, 339 (1972)
Y.S. Ko, W.S. Ahn, Microporous Mater., 9, 131 (1997)
S. Shevade, R.K. Ahedi, A.N. Kotasthane, Catal. Lett. 49, 69 (1997)
P. Wu, T. Komatsu, T. Yashima, Microporous Mesoporous. Mater. 20, 139 (1998)
D. Goldfarb, M. Bernardo, K.G. Strohmaier, D.E.W. Vaughan, H. Thomann, J. Am. Chem. Soc. 116, 6344 (1994)
S. Bordiga, R. Buzzoni, F. Geobaldo, C. Lamberti, E. Giamello, A. Zecchina, G. Leofanti, G. Petrini, G. Tozzola, G. Vlaic, J. Catal. 158, 486 (1996)
J. Pérez-Ramírez, J.C. Groen, A. Brückner, M.S. Kumar, U. Bentrup, M.N. Debbagh, L.A. Villaescusa, J. Catal. 232, 318 (2005)
U. Schwertmann, R.M. Cornell, Iron Oxides in the Laboratory (Wiley-VCH, Weinheim, 2000), pp. 67–134
E.M. Flanigen, H. Khatami, H.A. Szymanski, in Advance in Chemistry Series 101, ed. by E.M. Flanigen, L.B. Sand (American Chemical Society, Washington, D.C., 1971), p. 201
R. Szostak, V. Nair, T.L. Thomas, J. Chem. Soc., Faraday Trans. 1 83, 487 (1987)
P. Castaldi, L. Santona, C. Cozza, V. Giuliano, C. Abbruzzese, V. Nastro, P. Melis, J. Mol. Struct. 734, 99 (2005)
M. Salavati-Niasari, J. Incl. Phenom. Macrocycl. 65, 317 (2009) doi:10.1007/s10847-009-9585-y
A. Nezamzadeh-Ejhieh, S. Hushmandrad Appl. Catal. A 388, 149 (2010)