Synthesis of five-layered chiral perovskite nanowires and enacting chiroptical activity regulation

Cell Reports Physical Science - Tập 4 - Trang 101299 - 2023
Ying Cui1, Jiawei Jiang2, Wenbo Mi2, Yin Xiao1
1School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
2Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300350, China

Tài liệu tham khảo

Morrow, 2017, Transmission of chirality through space and across length scales, Nat. Nanotechnol., 12, 410, 10.1038/nnano.2017.62 Nemati, 2018, Chirality amplification by desymmetrization of chiral ligand-capped nanoparticles to nanorods quantified in soft condensed matter, Nat. Commun., 9, 3908, 10.1038/s41467-018-06400-0 Fan, 2012, Chiral nanocrystals: plasmonic spectra and circular dichroism, Nano Lett., 12, 3283, 10.1021/nl3013715 Sang, 2020, Circularly polarized luminescence in nanoassemblies: generation, amplification, and application, Adv. Mater., 32, e1900110, 10.1002/adma.201900110 Chauleau, 2020, Electric and antiferromagnetic chiral textures at multiferroic domain walls, Nat. Mater., 19, 386, 10.1038/s41563-019-0516-z Banerjee-Ghosh, 2018, Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates, Science, 360, 1331, 10.1126/science.aar4265 Kim, 2021, Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode, Science, 371, 1129, 10.1126/science.abf5291 Quan, 2016, Ligand-stabilized reduced-dimensionality perovskites, J. Am. Chem. Soc., 138, 2649, 10.1021/jacs.5b11740 Georgieva, 2018, Imprinting chirality onto the electronic states of colloidal perovskite nanoplatelets, Adv. Mater., 30, e1800097, 10.1002/adma.201800097 Long, 2018, Spin control in reduced-dimensional chiral perovskites, Nat. Photonics, 12, 528, 10.1038/s41566-018-0220-6 Wang, 2020, A chiral reduced-dimension perovskite for an efficient flexible circularly polarized light photodetector, Angew. Chem. Int. Ed. Engl., 59, 6442, 10.1002/anie.201915912 Katan, 2019, Quantum and dielectric confinement effects in lower-dimensional hybrid perovskite semiconductors, Chem. Rev., 119, 3140, 10.1021/acs.chemrev.8b00417 Ishii, 2020, Direct detection of circular polarized light in helical 1D perovskite-based photodiode, Sci. Adv., 6, eabd3274, 10.1126/sciadv.abd3274 Jana, 2020, Organic-to-inorganic structural chirality transfer in a 2D hybrid perovskite and impact on Rashba-Dresselhaus spin-orbit coupling, Nat. Commun., 11, 4699, 10.1038/s41467-020-18485-7 Tang, 2010, Optical chirality and its interaction with matter, Phys. Rev. Lett., 104, 163901, 10.1103/PhysRevLett.104.163901 Di Nuzzo, 2020, Circularly polarized photoluminescence from chiral perovskite thin films at room temperature, ACS Nano, 14, 7610, 10.1021/acsnano.0c03628 Hubley, 2022, Chiral perovskite nanoplatelets exhibiting circularly polarized luminescence through ligand optimization, Adv. Opt. Mater., 10, 2200394, 10.1002/adom.202200394 Choi, 2016, Chirality inversion of CdSe and CdS quantum dots without changing the stereochemistry of the capping ligand, ACS Nano, 10, 3809, 10.1021/acsnano.6b00567 Georgieva, 2022, Ligand coverage and exciton delocalization control chiral imprinting in perovskite nanoplatelets, J. Phys. Chem. C, 126, 15986, 10.1021/acs.jpcc.2c04192 Yan, 2021, Alkyl-aryl cation mixing in chiral 2D perovskites, J. Am. Chem. Soc., 143, 18114, 10.1021/jacs.1c06841 Stoumpos, 2017, High members of the 2D Ruddlesden-popper halide perovskites: synthesis, optical properties, and Solar cells of (CH3(CH2)(3)NH3)(2)(CH3NH3)(4)Pb(5)I16, Chem, 2, 427, 10.1016/j.chempr.2017.02.004 Akkerman, 2016, Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control, J. Am. Chem. Soc., 138, 1010, 10.1021/jacs.5b12124 Shi, 2020, Surface regulation of CsPbBr3 quantum dots for standard blue-emission with boosted PLQY, Adv. Opt. Mater., 8, 2000167, 10.1002/adom.202000167 Li, 2019, Consecutive interfacial transformation of cesium lead halide nanocubes to ultrathin nanowires with improved stability, ACS Appl. Mater. Interfaces, 11, 3351, 10.1021/acsami.8b19219 Wang, 2021, Reversible transformation between CsPbBr3 perovskite nanowires and nanorods with polarized optoelectronic properties, Adv. Funct. Mater., 31, 2011251, 10.1002/adfm.202011251 Cho, 2017, Influence of ligand shell ordering on dimensional confinement of cesium lead bromide (CsPbBr3) perovskite nanoplatelets, J. Mater. Chem. C Mater., 5, 8810, 10.1039/C7TC02194A Xing, 2018, Color-stable highly luminescent sky-blue perovskite light-emitting diodes, Nat. Commun., 9, 3541, 10.1038/s41467-018-05909-8 Imran, 2016, Colloidal synthesis of strongly fluorescent CsPbBr3 nanowires with width tunable down to the quantum confinement regime, Chem. Mater., 28, 6450, 10.1021/acs.chemmater.6b03081 Zhong, 2019, L-type ligand-assisted acid-free synthesis of CsPbBr3 nanocrystals with near-unity photoluminescence quantum yield and high stability, Nano Lett., 19, 4151, 10.1021/acs.nanolett.9b01666 Li, 2018, Surface ligand engineering for near-unity quantum yield inorganic halide perovskite QDs and high-performance QLEDs, Chem. Mater., 30, 6099, 10.1021/acs.chemmater.8b02544 Bekenstein, 2015, Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies, J. Am. Chem. Soc., 137, 16008, 10.1021/jacs.5b11199 Pan, 2016, Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering, Adv. Mater., 28, 8718, 10.1002/adma.201600784 Ahn, 2017, A new class of chiral semiconductors: chiral-organic-molecule-incorporating organic-inorganic hybrid perovskites, Mater. Horiz., 4, 851, 10.1039/C7MH00197E Chen, 2019, Circularly polarized light detection using chiral hybrid perovskite, Nat. Commun., 10, 1927, 10.1038/s41467-019-09942-z Jiang, 2020, Emergence of complexity inhierarchically organized chiral particles, Science, 368, 642, 10.1126/science.aaz7949 Pizzolato, 2018, Central-to-Helical-to-Axial-to-central transfer of chirality with a photoresponsive catalyst, J. Am. Chem. Soc., 140, 17278, 10.1021/jacs.8b10816 Sato, 2016, Binaphthyl luminophores with triphenylsilyl groups: sign inversion of circularly polarized luminescence and circular dichroism, Tetrahedron, 72, 7032, 10.1016/j.tet.2016.09.041 Sheng, 2015, Reversal circularly polarized luminescence of AIE-active chiral binaphthyl molecules from solution to aggregation, Chemistry, 21, 13196, 10.1002/chem.201502193 Jana, 2021, Structural descriptor for enhanced spin-splitting in 2D hybrid perovskites, Nat. Commun., 12, 4982, 10.1038/s41467-021-25149-7 Shamsi, 2019, Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties, Chem. Rev., 119, 3296, 10.1021/acs.chemrev.8b00644 Ren, 2021, 2D perovskite nanosheets with intrinsic chirality, J. Phys. Chem. Lett., 12, 2676, 10.1021/acs.jpclett.1c00315 Gao, 2017, Excitonic circular dichroism of chiral quantum rods, J. Am. Chem. Soc., 139, 8734, 10.1021/jacs.7b04224 Li, 2017, 50-Fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control, Adv. Mater., 29, 1603885, 10.1002/adma.201603885 Akkerman, 2015, Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions, J. Am. Chem. Soc., 137, 10276, 10.1021/jacs.5b05602 Paul, 2021, Effect of lead:halide precursor ratio on the photoluminescence and carrier dynamics of violet- and blue-emitting lead halide perovskite nanocrystals, J. Phys. Chem. C, 125, 23539, 10.1021/acs.jpcc.1c07740 Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B Condens. Matter, 54, 11169, 10.1103/PhysRevB.54.11169 Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Grimme, 2010, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys., 132, 154104, 10.1063/1.3382344