Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates

Materials Science in Semiconductor Processing - Tập 41 - Trang 67-82 - 2016
Khurshed A. Shah1, Bilal A. Tali1
1Nanomaterials Research Laboratory, Department of Physics, Govt. Degree College for Women, K. P. Road, Anantnag, 192101, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Iijima, 1991, Helical microtubules of graphitic carbon, Nature, 354, 56, 10.1038/354056a0

Radushkevich, 1952, 26, 88

Iijima, 1993, Single-shell carbon nanotubes of 1-nm diameter, Nature, 363, 603, 10.1038/363603a0

Harris, 1999

Shah, 2013

Dai, 2003, Aligned carbon nanotubes, Phys. Chem., 4, 1150

Yan, 2007, Advances in carbon-nanotube assembly, Small, 3, 24, 10.1002/smll.200600354

Qian, 2006, Fabrication of small diameter few-walled carbon nanotubes with enhanced field emission property, J. Nanosci. Nanotechnol., 6, 1346, 10.1166/jnn.2006.140

Qi, 2006, Synthesis of high purity few walled carbon nanotubes from ethanol/methanol mixture, Chem. Mater., 18, 5691, 10.1021/cm061528r

Hou, 2009, Functionalized few walled carbon nanotubes for mechanical reinforcement of polymeric composites, ACS Nano, 3, 1057, 10.1021/nn9000512

Zhu, 2002, Direct synthesis of long single-walled carbon nanotube, Science, 296, 884, 10.1126/science.1066996

Wang, 2006, Vertically aligned carbon nanotube arrays, Appl. Phys. Lett., 88, 213111, 10.1063/1.2206152

Hamada, 1992, New one-dimensional conductors: graphitic microtubules, Phys. Rev. Lett., 68, 1579, 10.1103/PhysRevLett.68.1579

Yu, 2000, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties, Phys. Rev. Lett., 84, 5552, 10.1103/PhysRevLett.84.5552

Yu, 2000, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, 287, 637, 10.1126/science.287.5453.637

Wong, 1997, Atomic force strength and toughness of nanorods and nanotubes, Science, 277, 1971, 10.1126/science.277.5334.1971

Demczyk, 2002, Direct mechanical measurement of tensile strength and elastic modulus of multi-walled carbon nanotubes, Mater. Sci. Eng. A, 334, 173, 10.1016/S0921-5093(01)01807-X

Hone, 1999, Thermal conductivity of single-walled carbon nanotubes, Phys. Rev. B, 59, R2514, 10.1103/PhysRevB.59.R2514

Kim, 2001, Thermal transport measurements of individual multiwalled nanotubes, Phys. Rev. Lett., 87, 215502, 10.1103/PhysRevLett.87.215502

Teo, 2003, Catalytic synthesis of carbon nanotubes and nanofibers, Nanosci. Nanotechnol., 1

Odom, 1998, Atomic structure and electronic properties of single-walled carbon nanotubes, Nature, 391, 62, 10.1038/34145

Forro, 2001, Carbon Nanotube Synthesis, Structure, Properties And Applications

Thess, 1996, Crystalline ropes of metallic carbon nanotubes, Science, 273, 483, 10.1126/science.273.5274.483

Schonenberger, 1999, Interference and interaction in multi-wall carbon nanotube, Appl. Phys. A, 69, 283, 10.1007/s003390051003

de Heer, 2000, Nanotubes and the pursuit of applications, Phys. World, 13, 49

Frank, 1998, Carbon nanotube quantum resistors, Science, 280, 1744, 10.1126/science.280.5370.1744

Baughman, 2002, Carbon nanotubes – the route toward applications, Science, 297, 787, 10.1126/science.1060928

De Volder, 2013, Carbon nanotubes: present and future commercial applications, Science, 339, 535, 10.1126/science.1222453

Jariwala, 2013, Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing, Chem. Soc. Rev., 42, 2824, 10.1039/C2CS35335K

Fam, 2011, A review on technological aspects influencing commercialization of carbon nanotube sensors, Sens. Actuators, 157, 1, 10.1016/j.snb.2011.03.040

Magrez, 2010, Catalytic CVD synthesis of carbon nanotubes, Materials, 3, 4871, 10.3390/ma3114871

Prasek, 2011, Chemical vapor deposition for carbon nanotubes synthesis, J. Mater. Chem., 21, 15872, 10.1039/c1jm12254a

Kumar, 2010, Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production, J. Nanosci. Nanotechnol., 10, 3739, 10.1166/jnn.2010.2939

Hirlekar, 2009, Carbon nanotubes and its applications, Asian J. Pharm. Clin. Res., 65, 17

Vashit, 2011, Advances in carbon nanotube based electrochemical sensors for bio-analytical applications, Biotechnol. Adv., 29, 169, 10.1016/j.biotechadv.2010.10.002

Collins, 2000, Multishell conduction in multiwalled carbon nanotubes, Appl. Phys. A Mater. Sci. Process., 283, 329

Ebbesen, 1996, Carbon nanotubes, Phys. Today, 49, 26, 10.1063/1.881603

Dai, 2002, Carbon nanotubes: synthesis, Surf. Sci., 500, 218, 10.1016/S0039-6028(01)01558-8

Ajayan, 1999, Synthesis of peptide attached carbon nanotube network for bio-medical applications, Chem. Rev., 99, 1787, 10.1021/cr970102g

Chen, 2010, Controlled growth and modification of vertically-aligned carbon nanotubes, Mater. Sci. Eng., 70, 63, 10.1016/j.mser.2010.06.003

Ajayan, 2001, Application of carbon nanotubes, Appl. Phys., 80, 391, 10.1007/3-540-39947-X_14

Endo, 2006, Development and application of carbon nanotubes, Jpn. J. Appl. Phys., 45, 4883, 10.1143/JJAP.45.4883

Robertson, 2012, Applications of carbon nanotubes grown by chemical vapour deposition, Jpn. J. Appl. Phys., 51, 1, 10.1143/JJAP.51.01AH01

Grobert, 2007, Carbon nanotubes-becoming clean, Mater. Today, 10, 28, 10.1016/S1369-7021(06)71789-8

Dai, 2001, Controlled synthesis and modification of carbon nanotubes and C60: carbon nanostructures for advanced polymeric composite materials, Adv. Mater., 13, 899, 10.1002/1521-4095(200107)13:12/13<899::AID-ADMA899>3.0.CO;2-G

Coleman, 2006, A review of the mechanical properties of carbon nanotube–polymer composites, Carbon, 441, 624

Thostenson, 2005, Nanocomposites in context, Compos. Sci. Technol., 65491

Ajayan, 2007, Materials science: nanotube composites, Nature, 447, 1066, 10.1038/4471066a

Thostenson, 2001, Advances in the science and technology of carbon nanotubes and their composites: a review, Compos. Sci. Technol., 61, 1899, 10.1016/S0266-3538(01)00094-X

Coleman, 2006, Mechanical reinforcement of polymers using carbon nanotubes, Adv. Mater., 18, 689, 10.1002/adma.200501851

Moniruzzaman, 2006, Polymer nanocomposites containing carbon nanotubes, Macromolecules, 39, 5194, 10.1021/ma060733p

Green, 2009, Nanotubes as polymers, Polymer, 50, 4979, 10.1016/j.polymer.2009.07.044

Cola, 2008, Effects of growth temperature on carbon nanotube array thermal interfaces, J. Heat Transf., 130, 114503, 10.1115/1.2969758

Mukai, 2009, Highly conductive sheets from millimeter-long single-walled carbon nanotubes and ionic liquids: application to fast-moving, low-voltage electromechanical actuators operable in air, Adv. Mater., 20, 1582, 10.1002/adma.200802817

Aliev, 2009, Giant-stroke, super elastic carbon nanotube aerogel muscles, Science, 323, 1575, 10.1126/science.1168312

Simon, 2008, Materials for electrochemical capacitors, Nat. Mater., 7845

Grimsdale, 2005, New carbon-rich materials for electronics, lithium batteries, and hydrogen storage applications, Chem. Commun., 41, 2197, 10.1039/b418172g

Pushparaj, 2007, Flexible energy storage devices based on nanocomposite, Proc. Natl. Acad. Sci., 10413574

Jiang, 2002, Nanotechnology: spinning continuous carbon nanotube yarns, Nature, 419, 801, 10.1038/419801a

Zhang, 2004, Multifunctional carbon nanotube yarns by downsizing an ancient technology, Science, 306, 1358, 10.1126/science.1104276

Zhang, 2005, Strong, transparent, multifunctional, carbon nanotube sheets, Science, 309, 1215, 10.1126/science.1115311

Zhang, 2006, Spinning and processing continuous yarns from 4in. wafer scale super-aligned carbon nanotube arrays, Adv. Mater., 18, 1505, 10.1002/adma.200502528

Li, 2007, Structure-dependent electrical properties of carbon nanotube fibers, Adv. Mater., 19, 3358, 10.1002/adma.200602966

Zhang, 2007, Ultra strong, stiff, and lightweight carbon-nanotube fibers, Adv. Mater., 19, 4198, 10.1002/adma.200700776

Koziol, 2007, High-performance carbon nanotube fibber, Science, 318, 1892, 10.1126/science.1147635

Zhang, 2007, Strong carbon nanotube fibers spun from long carbon nanotube arrays, Small, 3, 244, 10.1002/smll.200600368

Liu, 2009, Controlled growth and modification of vertically-aligned, Sensors, 9, 7343, 10.3390/s90907343

Balasubramanian, 2006, Biosensors based on carbon nanotubes, Anal. Bioanal. Chem., 385, 452, 10.1007/s00216-006-0314-8

Zhang, 2009, Vertically aligned carbon nanotube, Energy Environ. Sci., 2, 932, 10.1039/b906812k

Zhang, 2009, Carbon-based materials as super capacitor electrodes, Chem. Soc. Rev., 38, 2520, 10.1039/b813846j

Liu, 2008, Oriented nanostructures for energy conversion and storage, ChemSusChem, 1, 676, 10.1002/cssc.200800087

Umeyama, 2008, Metallic single walled carbon nanotubes for electrically conductive materials and devices, Energy Environ. Sci., 1, 1120

Endo, 2008, Potential applications of carbon nanotubes, Top. Appl. Phys., 111, 13, 10.1007/978-3-540-72865-8_2

Cheng, 2008, Template-directed materials for rechargeable lithium-ion batteries, Chem. Mater., 20, 667, 10.1021/cm702091q

Liu, 2006, Carbon nanotubes: advanced topics in the synthesis, J. Power Sour., 155, 95, 10.1016/j.jpowsour.2006.01.030

Cao, 2009, Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects, Adv. Mater., 21, 29, 10.1002/adma.200801995

Avouris, 2007, Carbon-based electronics, Nat. Nanotechnol., 2, 605, 10.1038/nnano.2007.300

Fan, 1999, Carbon nanotubes: synthesis, integration, and properties, Science, 283, 512, 10.1126/science.283.5401.512

Choi, 1999, Fully sealed, high-brightness carbon-nanotube field-emission display, Appl. Phys. Lett., 75, 3129, 10.1063/1.125253

Rinzler, 1995, Unrevealing nanotubes – field-emission from an atomic wire, Science, 269, 1550, 10.1126/science.269.5230.1550

Han, 2002, Vertically aligned carbon nanotubes grown at low temperatures for use in displays, Appl. Phys. Lett., 81, 2070, 10.1063/1.1506408

Lee, 2001, Realization of gated field emitters for electro-photonic applications using carbon nanotube line emitters directly grown into sub-micrometer holes, Adv. Mater., 13, 479, 10.1002/1521-4095(200104)13:7<479::AID-ADMA479>3.0.CO;2-H

Chung, 2002, Carbon nanotube electron emitters with a gated structure using backside exposure processes, Appl. Phys. Lett., 80, 4045, 10.1063/1.1480104

Choi, 2001, Lateral field emitters fabricated using carbon nanotubes, Appl. Phys. Lett., 78, 1547, 10.1063/1.1349870

Yue, 2002, Growth of multi-walled carbon nanotube arrays by chemical vapour deposition over iron catalyst and the effect of growth parameters, Appl. Phys. Lett., 81, 355, 10.1063/1.1492305

De Jonge, 2002, Catalytic synthesis of CNT and nanofibers, Nature, 420, 393, 10.1038/nature01233

Rosen, 2000, Application of carbon nanotubes as electrodes in gas discharge tubes, Appl. Phys. Lett., 76, 1668, 10.1063/1.126130

Dai, 1996, Nanotubes as nanoprobes in scanning probe microscopy, Nature, 384, 147, 10.1038/384147a0

Nishijima, 1999, Carbon-nanotube tips for scanning probe microscopy: preparation by a controlled process and observation of deoxyribonucleic acid, Appl. Phys. Lett., 74, 4061, 10.1063/1.123261

Nguyen, 2001, Vertically aligned carbon nanofibers and related structures, Nanotechnology, 12, 363, 10.1088/0957-4484/12/3/326

Burch, 2006, Electrical conductance and breakdown in individual CNT multi-walled nanotubes, Appl. Phys. Lett., 89, 143110, 10.1063/1.2358308

Tans, 1998, Room-temperature transistor based on a single carbon nanotube, Nature, 393, 49, 10.1038/29954

Martel, 1998, Single and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett., 73, 2447, 10.1063/1.122477

Derycke, 2001, Carbon nanotube inter- and intra-molecular logic gates, Nano Lett., 1, 453, 10.1021/nl015606f

Bachtold, 2001, Logic circuits with carbon nanotube transistors, Science, 294, 1317, 10.1126/science.1065824

Hoenlein, 2006, Carbon nanotube applications in microelectronics, Micro-electron. Eng., 83, 619, 10.1016/j.mee.2005.12.018

Kreupl, 2002, Carbon nanotubes in interconnect applications, Micro-electron. Eng., 64, 399, 10.1016/S0167-9317(02)00814-6

Wei, 2008, The intra-molecular junctions of carbon nanotubes, Adv. Mater., 20, 2815, 10.1002/adma.200800589

Wagner, 1964, Vapour–liquid–solid mechanism of single crystal growth, Appl. Phys. Lett., 4, 89, 10.1063/1.1753975

Joselevich, 2008, Carbon nanotube synthesis and organization, Top. Appl. Phys., 111, 101, 10.1007/978-3-540-72865-8_4

Saifuddin, 2013, Carbon nanotubes: a review on structure and their interaction with proteins, J. Chem., 1, 10.1155/2013/676815

Nessim, 2010, Properties, synthesis, and growth mechanism of carbon nanotubes with special focus on thermal chemical vapour deposition, Nanoscale, 2, 1306, 10.1039/b9nr00427k

Takagi, 2006, Single-walled carbon nanotube growth from highly activated metal nanoparticles, Nano Lett., 6, 2642, 10.1021/nl061797g

Zhou, 2006, Copper catalyzing growth of single-walled carbon nanotubes on substrates, Nano Lett., 6, 2987, 10.1021/nl061871v

Yuan, 2008, Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts, Nano Lett., 8, 2576, 10.1021/nl801007r

Lee, 2005, Synthesis of carbon nanotubes over gold nanoparticle supported catalysts, Carbon, 43, 2654, 10.1016/j.carbon.2005.05.045

Yoshihara, 2008, Growth mechanism of carbon nanotubes over gold-supported catalysts, Jpn. J. Appl. Phys., 47, 1944, 10.1143/JJAP.47.1944

Liu, 2008, Effect of ambient gas on the catalytic properties of Au in single-walled carbon nanotube growth, Appl. Phys. Express, 1, 14001, 10.1143/APEX.1.014001

Steiner, 2009, Nanoscale zirconia as a non-metallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes, J. Am. Chem. Soc., 131, 12144, 10.1021/ja902913r

Li, 2001, Straight carbon nanotube Y junctions, Appl. Phys. Lett., 79, 1879, 10.1063/1.1404400

Uchino, 2005, Metal catalyst-free low-temperature carbon nanotube growth on SiGe islands, Appl. Phys. Lett., 86, 233110, 10.1063/1.1946191

Takagi, 2007, Carbon nanotube growth from semiconductor nanoparticles, Nano Lett., 7, 2272, 10.1021/nl0708011

T. Uchino, K. N. Bourdakos, G.N. Ayre, C.H. De Groot, P. Ashburn, D.C. Smith, in: L.-C. Chen, D.B. Geohegan, J. Robertson, Z.L. Wang (eds.), Materials Research Society Symposium Proceedings, Warrendale, PA, vol. 1081, 2008, pp. 1–9.

Uchino, 2009, Growth of single-walled carbon nanotubes using germanium nano-crystals formed by implantation, J. Electrochem. Soc., 156, K144, 10.1149/1.3147248

Magrez, 2010, Low-temperature, highly efficient growth of carbon nanotubes on functional materials by an oxidative dehydrogenation reaction, Materials, 3, 4871, 10.3390/ma3114871

Dupuis, 2005, The catalyst in the CCVD of carbon nanotubes – a review, Mater. Sci., 50, 929

Rafique, 2011, Production of carbon nanotubes by different routes – a review, J. Encapsul. Adsorpt. Sci., 1, 29, 10.4236/jeas.2011.12004

Koziol, 2010, Synthesis of carbon nanostructures by CVD, carbon and oxide nanostructures, Adv. Struct. Mater., 5, 23, 10.1007/8611_2010_12

Baker, 1989, Catalytic growth of carbon filaments, Carbon, 27, 315, 10.1016/0008-6223(89)90062-6

Walker, 1959, Carbon formation from carbon monoxide-hydrogen mixtures over iron catalysts, J. Phys. Chem., 63, 133, 10.1021/j150572a002

Dresselhaus, 1988

Li, 1996, Large scale synthesis of aligned carbon nanotubes, Science, 274, 1701, 10.1126/science.274.5293.1701

Tempel, 2010, Ink jet printing of ferritin as method for selective catalyst patterning and growth of multi-walled carbon nanotubes, Mater. Chem. Phys., 121, 178, 10.1016/j.matchemphys.2010.01.029

Dai, 1996, Chem. Phys. Lett., 260471

Phillippe Tessonnier, 2011, Recent progress on the growth mechanism of carbon nanotubes: a review, ChemSusChem, 4, 824, 10.1002/cssc.201100175

Cheung, 2002, J. Phys. Chem. B, 1062429

A. G. Nasibulin, A. Moisala, D. P. Brown, E.I. Kauppinen, Carbonat Press, 2003.

Cassell, 1999, J. Phys. Chem. B, 1036484

Patole, 2008, Optimization of water assisted chemical vapor deposition parameters for super growth of carbon nanotubes, Carbon, 46, 1987, 10.1016/j.carbon.2008.08.009

Byon, 2007, A synthesis of high purity single-walled carbon nanotubes from small diameters of cobalt nanoparticles by using oxygen-assisted chemical vapor deposition process, Bull. Korean Chem. Soc., 28, 2056, 10.5012/bkcs.2007.28.11.2056

Prasek, 2011, Methods for carbon nanotubes synthesis – review, J. Mater. Chem., 21, 15872, 10.1039/c1jm12254a

Varshney, 2010, Growth and field emission study of a monolithic carbon nanotube/diamond composite, Carbon, 48, 3353, 10.1016/j.carbon.2010.05.025

Brown, 2011, Growth of vertically aligned bamboo-like carbon nanotubes from ammonia/methane precursors using a platinum catalyst, Carbon, 49, 266, 10.1016/j.carbon.2010.09.018

Xu, 2011, Chirality-enriched semiconducting carbon nanotubes synthesized on high surface area MgO-supported catalyst, Mater. Lett., 65, 1878, 10.1016/j.matlet.2011.03.040

Dai, 2002, Carbon nanotubes: opportunities and challenges, Surf. Sci., 500, 218, 10.1016/S0039-6028(01)01558-8

Kumar, 2003, Camphor – a botanical precursor producing garden of carbon nanotubes, Diam. Relat. Mater., 12, 998, 10.1016/S0925-9635(02)00341-2

Endo, 1988, Grow carbon fibres in the vapour phase, ChemTech, 18, 568

Schützenberger, 1890, History of carbon nanotubes, Science, 111, 774

Grobert, 2001, Alloy nanowires: inside carbon nanotubes, Chem. Commun., 5, 471, 10.1039/b100190f

Nasibulin, 2006, Carbon nanotube synthesis from alcohols by a novel aerosol method, J. Nanopart. Res., 8, 465, 10.1007/s11051-005-9027-8

Ku, 2006, In situ structure characterization of airborne carbon nanofibres by tandem mobility? mass analysis, Nanotechnology, 17, 3613, 10.1088/0957-4484/17/14/042

Pinault, 2005, Evidence of sequential lift in growth of aligned multiwalled carbon nanotube multilayers, Nano Lett., 5, 2394, 10.1021/nl051472k

Mayne, 2001, Pyrolytic production of aligned carbon nanotubes, Chem. Phys. Lett., 338, 101, 10.1016/S0009-2614(01)00278-0

Reyes-Reyes, 2004, Efficient encapsulation, of gaseous nitrogen inside carbon nanotubes with bomboo-like structure using aerosol thermolysis, Chem. Phys. Lett., 396, 167, 10.1016/j.cplett.2004.07.125

Kamalakaran, 2003, In-situ formation of carbon nanotubes in an alumina–nanotube composite by spray pyrolysis, Carbon, 41, 2737, 10.1016/S0008-6223(03)00380-4

Braidy, 2002, Single-wall carbon nanotubes synthesis by means of UV laser vaporization, Chem. Phys. Lett., 354, 88, 10.1016/S0009-2614(02)00110-0

Zhong, 2005, Low temperature synthesis of extremely dense and vertically aligned single-walled carbon nanotubes, Jpn. J. Appl. Phys., 44, 1558, 10.1143/JJAP.44.1558

Kiselev, 2006, Extreme-length carbon nanofilaments with single-walled nanotube cores grown by pyrolysis of methane or acetylene, Carbon, 44, 2289, 10.1016/j.carbon.2006.02.020

Flahaut, 2003, Carbon-encapsulated cobalt nanoparticles, Chem. Commun., 1442, 10.1039/b301514a

Grobert, 2000, A novel route to aligned nanotubes and nanofibres using laser-patterned catalytic substrates, Appl. Phys. A, 70, 175, 10.1007/s003390050030

Wang, 2006, Direct synthesis of BCN single-walled nanotubes by bias-assisted hot filament chemical vapor deposition, J. Am. Chem. Soc., 128, 6530, 10.1021/ja0606733

Ewels, 2005, Nitrogen doping in carbon nanotubes, J. Nanosci. Nanotechnol., 5, 1345, 10.1166/jnn.2005.304

Lozano-Castelló, 2004, Preparation and characterisation of novel “sea-cucumber”-like structures containing carbon and boron, Carbon, 42, 2223, 10.1016/j.carbon.2004.04.029

Terrones, 2002, Synthetic routes to nanoscale BxCyNz architectures, Carbon, 40, 1665, 10.1016/S0008-6223(02)00008-8

Satishkumar, 1998, Single-walled nanotubes by the pyrolysis of acetylene-organometallic mixtures, Chem. Phys. Lett., 293, 47, 10.1016/S0009-2614(98)00727-1

Trasobares, 2002, Compartmentalized carbon nanotubes: chemistry, morphology and growth, J. Chem. Phys., 116, 8966, 10.1063/1.1473195

Trasobares, 2001, Electron beam puncturing of carbon nanotube containers for release of stored N2 gas, Eur. Phys. J. B, 22, 117

Palizdar, 2011, Investigation of Fe/MgO catalyst support precursors for the chemical vapour deposition growth of carbon nanotubes, J. Nanosci. Nanotechnol., 11, 5345, 10.1166/jnn.2011.3787

Plata, 2010, Multiple alkynes react with ethylene to enhance carbon nanotube synthesis, suggesting a polymerization-like formation mechanism, ACS Nano, 7185, 10.1021/nn101842g

Hernadi, 1996, Fe catalyzed carbon nanotube formation, Carbon, 34, 1249, 10.1016/0008-6223(96)00074-7

Kong, 1998, Chemical vapor deposition of methane for single-walled carbon nanotubes, Chem. Phys. Lett., 292, 567, 10.1016/S0009-2614(98)00745-3

He, 2011, Growth of carbon nanotubes in six orthogonal directions on spherical alumina microparticles, Carbon, 49, 2273, 10.1016/j.carbon.2011.01.060

Li, 1996, Large scale synthesis of aligned carbon nanotubes, Science, 274, 1701, 10.1126/science.274.5293.1701

Tomie, 2010, Prospective growth region for chemical vapor deposition synthesis of carbon nanotube on C–H–O ternary diagram, Diam. Relat. Mater., 19, 1401, 10.1016/j.diamond.2010.08.005

Sen, 1997, Carbon nanotubes by the metallocene route, Chem. Phys. Lett., 267, 276, 10.1016/S0009-2614(97)00080-8

Narkiewicz, 2010, Catalytic decomposition of hydrocarbons on cobalt, nickel and iron catalysts to obtain carbon nanomaterials, Appl. Catal. A, 384, 27, 10.1016/j.apcata.2010.05.050

Satiskumar, 1999, Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene–hydrocarbon mixtures: role of the metal nanoparticles produced in situ, Chem. Phys. Lett., 307, 158, 10.1016/S0009-2614(99)00521-7

Shirazi, 2011, Effects of different carbon precursors on synthesis of multiwall carbon nanotubes: purification and functionalization, Appl. Surf. Sci., 257, 7359, 10.1016/j.apsusc.2011.03.146

Atthipalli, 2011, Bombo like carbon nanotubes, J. Phys. Chem. C, 115, 3534, 10.1021/jp108624n

Wei, 2002, Microfabrication technology: organized assembly of carbon nanotubes, Nature, 416, 495, 10.1038/416495a

Nikolaev, 1999, Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chem. Phys. Lett., 313, 91, 10.1016/S0009-2614(99)01029-5

Santangelo, 2010, An overview of nanoparticles effect on mechanical properties of composites, J. Mater. Sci., 45, 783, 10.1007/s10853-009-4001-y

Hou, 2011, Decomposition of ethanol and di-methyl ether during chemical vapour deposition synthesis of single-walled carbon nanotubes, Jpn. J. Appl. Phys., 50, 4, 10.7567/JJAP.50.065101

Yong, 2011, Synthesis of heterostructured helical carbon nanotubes by iron-catalyzed ethanol decomposition, Micron, 42, 547, 10.1016/j.micron.2011.01.007

Parthasarathy, 1995, Template synthesis of graphitic nanotubules, Adv. Mater., 7, 896, 10.1002/adma.19950071103

Kyotani, 1996, Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film, Chem. Mater., 8, 2109, 10.1021/cm960063+

Terrones, 1997, Controlled production of aligned-nanotube bundles, Nature, 388, 52, 10.1038/40369

Ghosh, 2007, A simple method of producing single-walled carbon nanotubes from a natural precursor: Eucalyptus oil, Mater. Lett., 61, 3768, 10.1016/j.matlet.2006.12.030

Afre, 2005, Growth of vertically aligned carbon nanotubes on silicon and quartz substrate by spray pyrolysis of a natural precursor: turpentine oil, Chem. Phys. Lett., 414, 6, 10.1016/j.cplett.2005.08.040

Sharon, 2007, Hydrogen storage by carbon materials synthesized from oil seeds and fibrous plant materials, Int. J. Hydrog. Energy, 32, 4238, 10.1016/j.ijhydene.2007.05.038

Kumar, 2011, Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: neem oil, Nano Res. Lett., 6, 215, 10.1186/1556-276X-6-92

M. Endo, H. Fijiwara, E. Fukunaga, Carbon materials for advanced technologies, in: 18th Meeting Japanese Carbon Society, Japanese Carbon Society, Saitama, December 1991

M. Endo, K. Takeuchi, S. Igarashi, K. Kobori, M. Shiraishi, H.W. Kroto, Carbon materials, in: 19th Meeting Japanese Carbon Society, Japanese Carbon Society, Kyoto, December 1992

Endo, 1993, The production and structure of pyrolytic carbon nanotubes (PCNTs), J. Phys. Chem. Solids, 4, 1841, 10.1016/0022-3697(93)90297-5

Jose-Yacaman, 1993, Catalytic growth of carbon microtubules with fullerene structure, Appl. Phys. Lett., 62, 657, 10.1063/1.108857

Nerushev, 2003, Particle size dependence and model for iron-catalyzed growth of carbon nanotubes by thermal chemical vapor deposition, Jpn. J. Appl. Phys., 93, 4185, 10.1063/1.1559433

Dai, 1996, Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide, Chem. Phys. Lett., 260, 471, 10.1016/0009-2614(96)00862-7

Hafner, 1998, Catalytic growth of single-wall carbon nanotubes from metal particles, Chem. Phys. Lett., 296, 195, 10.1016/S0009-2614(98)01024-0

Kong, 1998, Carbon nanotubes: a review on structure and their interaction with proteins, Chem. Phys. Lett., 292, 567, 10.1016/S0009-2614(98)00745-3

Flahaut, 1999, Carbon nanotube–metal–oxide nanocomposites: microstructure, electrical conductivity and mechanical properties, Chem. Phys. Lett., 300, 236, 10.1016/S0009-2614(98)01304-9

Cheng, 1998, Bulk morphology and diameter distribution of single walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons, Chem. Phys. Lett., 289, 602, 10.1016/S0009-2614(98)00479-5

Maruyama, 2003, Synthesis of single-walled carbon nanotubes with narrow diameter-distribution from fullerene, Chem. Phys. Lett., 375, 553, 10.1016/S0009-2614(03)00907-2

Gruneis, 2006, Growth of carbon nanotubes from wet chemistry and thin film multilayer catalysts, Phys. Status Solidi, 243, 3054, 10.1002/pssb.200669175

Maruyama, 2002, Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol, Chem. Phys. Lett., 360, 229, 10.1016/S0009-2614(02)00838-2

Gruneis, 2006, High quality double wall carbon nanotubes, Carbon, 44, 3177

Murakami, 2003, Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substrates, Chem. Phys. Lett., 377, 3817, 10.1016/S0009-2614(03)01094-7

Murakami, 2004, Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy, Chem. Phys. Lett., 385, 298, 10.1016/j.cplett.2003.12.095

Maruyama, 2005, Polarization dependence of resonant Raman scattering from vertically aligned single-walled carbon nanotube films, Chem. Phys. Lett., 403, 320, 10.1016/j.cplett.2005.01.031

Xiang, 2009, Low dimensional heat and mass transport in carbon nanotubes, J. Phys. Chem. C, 113, 7511, 10.1021/jp810454f

Joshi, 2010, Chemical vapour deposition process with a Ni-catalyst layer, J. Mater. Chem., 20, 1717, 10.1039/b919579c

Han, 2009, Carbon nanotube synthesis and growth mechanism, J. Nanomater., 562376

Sankaran, 2008, Hydriding of nitrogen contain carbon nanotubes, Indian J. Chem., 47, 808

Tang, 1998, Mono-sized single-wall carbon nanotubes formed in channels of AlPO4-5 single crystal, Appl. Phys. Lett., 73, 2287, 10.1063/1.121704

Yudasaka, 1997, Nitrogen-containing carbon nanotube growth from Ni phthalocyanine by chemical vapor deposition, Carbon, 35, 195, 10.1016/S0008-6223(96)00142-X

Satishkumar, 2000, Y-junction carbon nanotubes, Appl. Phys. Lett., 77, 2530, 10.1063/1.1319185

Deepak, 2001, Synthetic strategies for Y-junction carbon nanotubes, Chem. Phys. Lett., 345, 5, 10.1016/S0009-2614(01)00849-1

G. Kucukayan, S. Kayacan, B. Baykal, E. Bengu, Materials Research Society Symposium Proceedings on Carbon Nanotubes (Symposium-P)1081E, 312, 2008, pp. 86–92

M. Kumar, X. Zhao, Y. Ando, International Symposium on Nanocarbons Nagano, Japan, Extended Abstract, November 2001, pp. 244–245

Kumar, 2002, Carbon nanotubes from camphor, Mol. Cryst. Liq. Cryst., 387, 117, 10.1080/10587250215228

Kumar, 2003, Single-wall and multi-wall carbon nanotubes from camphor – a botanical hydrocarbon, Diam. Relat. Mater., 12, 998, 10.1016/S0925-9635(02)00341-2

Kumar, 2003, Chemical vapor deposition of carbon nanotubes, Chem. Phys. Lett., 374, 521, 10.1016/S0009-2614(03)00742-5

Kumar, 2004, Field emission from camphor–pyrolyzed carbon nanotubes, Chem. Phys. Lett., 385, 161, 10.1016/j.cplett.2003.12.064

Kumar, 2007, The use of camphor-grown carbon nanotube array as an efficient field emitter, Carbon, 45, 1899, 10.1016/j.carbon.2007.04.023

Kumar, 2008, Gigas growth of carbon nanotubes, Def. Sci. J., 58, 496, 10.14429/dsj.58.1670

Yamada, 2006, Synthesis of carbon nanotubes from polycyclic compounds by CVD method, Matter, 320, 163

Somani, 2009, Carbon nanofibers and multiwalled carbon nanotubes from camphor and their field electron emission, Curr. Appl. Phys., 9, 144, 10.1016/j.cap.2008.01.002

Zdrejek, 2015, Synthesis of carbon nanotubes from propane, Chem. Vapor Depos., 21, 1

Li, 2010, Synthesis of well-aligned carbon nanotubes, Chem. Phys. A, 84, 1560

Cui, 2010, Multi-directional growth of aligned carbon nanotubes, Nanoscale Res. Lett., 5, 941, 10.1007/s11671-010-9586-1

Du, 2010, Methods for carbon nanotubes synthesis, Mater. Charact., 61, 427, 10.1016/j.matchar.2010.01.009

Feng, 2010, One-step fabrication of high quality double-walled carbon nanotube thin films by a chemical vapor deposition process, Carbon, 48, 3817, 10.1016/j.carbon.2010.06.046

Ghoranneviss, 2014, Growth of carbon nanotubes on silicon substrate and nickel catalyst by thermal CVD using ethanol, Bull. Environ. Pharmocol. Life Sci., 3, 47

Pradhan, 2002, Carbon nanotubes, nanofilaments and nanobeads by thermal chemical vapor deposition process, Mater. Sci. Eng. B, 96, 24, 10.1016/S0921-5107(02)00309-4

Qian, 2002, Synthesis of carbon nanotubes from liquefied petroleum gas containing sulphur, Carbon, 40, 2968, 10.1016/S0008-6223(02)00244-0

Qiu, 2006, CVD synthesis of coal-gas-derived carbon nanotubes and nanocapsules containing magnetic iron carbide and oxide, Carbon, 44, 2565, 10.1016/j.carbon.2006.05.030

Awadallah, 2012, Synthesis of carbon nanotubes by CCVD of natural gas using hydrotreating catalysts, Egypt. J. Pet., 21, 101, 10.1016/j.ejpe.2012.11.005

Kavita, 2014, Influence of carbon source on synthesis of CNT using chemical vapour deposition, Int. J. Pharm., Chem. Biol. Sci., 10, 188

Kang, 2005, Obtaining carbon nanotubes from grass, Nanotechnology, 16, 1192, 10.1088/0957-4484/16/8/036

Maoshuai He, 2013, Chiral-selective growth of single-walled carbon nanotubes on lattice-mismatched epitaxial cobalt nanoparticles, Sci. Rep., 3, 1

Yang, 2014, Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts, Nature, 510, 522, 10.1038/nature13434

Thess, 1996, Crystalline ropes of metallic carbon nanotubes, Science, 273, 483, 10.1126/science.273.5274.483

Chiang, 2007, Microplasma synthesis of metal nanoparticles for gas-phase studies of catalyzed carbon nanotube growth, Appl. Phys. Lett., 91, 121503, 10.1063/1.2786835

Hart, 2006, Rapid growth and flow-mediated nucleation of millimeter-scale aligned carbon nanotube structures from a thin-film catalyst, J. Phys. Chem. B, 110, 8250, 10.1021/jp055498b

Ding, 2008, The importance of strong carbon–metal adhesion for catalytic nucleation of single-walled carbon nanotubes, Nano Lett., 8, 463, 10.1021/nl072431m

Rümmeli, 2007, Catalyst size dependencies for carbon nanotube synthesis, Phys. Status Solidi B, 244, 3911, 10.1002/pssb.200776136

Takagi, 2009, Carbon nanotube growth from diamond, Communication, 131, 6922

Han, 2005, Template-free directional drowth of single-walled carbon nanotubes on a- and r-plane sapphire, Communication, 127, 5294

Huang, 2009, Metal-catalyst-free growth of single-walled carbon nanotubes on substrates, Communication, 131, 2094

Y. Hu, L. Kang, Q. Zhao, H. Zhong, S. Zhang, L. Yang, Z. Wang, J. Lin, Q. Li, Z. Zhang, L. Peng, Z. Liu, J. Zhang, Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts, Nature Communications 10.1038/ncomms7099

Flahaut, 2005, Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation, Carbon, 43, 375, 10.1016/j.carbon.2004.09.021

Xiang, 2009, Co-based catalysts of carbon nanotubes, Appl. Clay Sci., 42, 405, 10.1016/j.clay.2008.04.004

Karima, 2015, The impact of cadmium loading in Fe/alumina and synthesis temperature on carbon nanotubes growth by chemical vapour deposition method, J. Sci. Islam. Repub. Iran, 26, 17

Harutyunyan, 2002, CVD synthesis of single wall carbon nanotubes, Nano Lett., 2, 525, 10.1021/nl0255101

Grazhulene, 2010, Adsorption properties of carbon nanotubes depending on the temperature of their synthesis and subsequent treatment, J. Anal. Chem., 65, 682, 10.1134/S106193481007004X

Shin, 2006, In situ growth of single-walled carbon nanotubes by bimetallic technique with/without dielectric support for nanodevice applications, J. Vac. Sci. Technol. B, 24, 358, 10.1116/1.2151223

Farzanch, 2008, Preparation of carbon nanotubes by CVD process over nanoparticles of Ni–Ce–Zr mixed oxides, J. Sci., Islam. Repub. Iran, 19, 119

Ghosh, 2015, Synthesis of single-walled carbon nanotubes on graphene layers, Chem. Commun., 5, 8973

Zhang, 2006, Methods for carbon nanotubes synthesis, Mater. Chem. Phys., 97, 415, 10.1016/j.matchemphys.2005.08.036

Zhang, 2005, Preparation and characterization of carbon nanotubes, Mater. Lett., 59, 4044, 10.1016/j.matlet.2005.07.081

Sivakumar, 2011, Optimized parameters for carbon nanotubes synthesis over Fe and Ni catalysts via methane CVD, Adv. Mater. Sci., 27, 25

Scheibe, 2010, Oxidation and reduction of multiwalled carbon nanotubes, Mater. Charact., 61, 185, 10.1016/j.matchar.2009.11.008

Arjmandi, 2009, CVD synthesis of small-diameter single walled carbon nanotubes, Comput. Sci. Eng. Electr. Eng., 16, 61

Kim, 2002, Synthesis of ultralong and high percentage of semiconducting single-walled carbon nanotubes, Nano Lett., 2, 703, 10.1021/nl025602q

Lee, 2002, Catalyst effect on carbon nanotubes synthesized by thermal chemical vapour deposition, Chem. Phys. Lett., 360, 250, 10.1016/S0009-2614(02)00831-X

Lobiak, 2015, Ni–Mo and Co–Mo alloy nanoparticles for catalytic chemical vapour deposition synthesis of carbon nanotubes, J. Alloy. Compd., 621, 351, 10.1016/j.jallcom.2014.09.220

Lopez, 2015, Temperature effect on the synthesis of carbon nanotubes and core–shell Ni nanoparticle by thermal CVD, Diam. Relat. Mater., 52, 59, 10.1016/j.diamond.2014.12.006

Ghoranneviss, 2014, Growth of carbon nanotubes on silicon substrate and nickel catalyst by thermal CVD using ethanol, Bull. Environ. Sci. Pharmacol. Life Sci., 3, 47

Poor, 2010, Catalytic chemical vapour deposition of carbon nanotubes using Fe-doped alumina catalysts, Catal. Today, 150, 100, 10.1016/j.cattod.2009.06.019

Mendoza, 2005, Studies on carbon nanotubes synthesis via methane CVD process using Co catalyst on carbon supports, Nanotechnology, 16, S224

Li, 2008, Air-assisted growth of ultra-long carbon nanotube bundles, Nanotechnology, 19, 455609, 10.1088/0957-4484/19/45/455609

Patole, 2008, Alignment and wall control of ultra long carbon nanotubes in water assisted chemical vapour deposition, J. Appl. Phys., 41, 155311

Li, 2008, Air-assisted growth of ultra-long carbon nanotube bundles, Nanotechnology, 45, 455609, 10.1088/0957-4484/19/45/455609

Chen, 2015, The relationship between the growth rate and the lifetime in carbon nanotube synthesis, Nanoscale

Chakrabarti, 2006, Growth of super long aligned brush like carbon nanotubes, Jpn. Appl. Phys., 28, L720, 10.1143/JJAP.45.L720

Zhao, 2015, Large scale synthesis and characterization of super-bundle single walled carbon nanotubes by water assisted chemical vapour deposition, RCS Adv., 5, 30564

de Villoria, 2009, High-yield growth of vertically aligned carbon nanotubes on a continuously moving substrate, Nanotechnology, 20, 405611, 10.1088/0957-4484/20/40/405611

Lee, 2005, Vertically aligned carbon nanofibers and related structures, J. Vac. Sci. Technol. B, 23, 1450, 10.1116/1.1941187

Yoshikawa, 2008, An efficient fabrication of vertically aligned carbon nanotubes on flexible aluminum foils by catalyst-supported chemical vapor deposition, Nanotechnology, 19, 245607, 10.1088/0957-4484/19/24/245607

Asli, 2013, Effect of the ratio of catalyst to carbon source on the growth of vertically aligned carbon nanotubes on nanostructured porous silicon templates, Int. J. Ind. Chem., 4, 1, 10.1186/2228-5547-4-23

Qi, 2007, Synthesis of uniform double-walled carbon nanotubes using Iron disilicide as catalyst, Nano Lett., 7, 2417, 10.1021/nl071089a

Lyu, 2003, Double walled carbon nanotubes, Chem. Mater., 15, 3951, 10.1021/cm030309s

Wei, 2003, Raman study on double-walled carbon nanotubes, J. Matter. Chem., 13, 1340, 10.1039/b300484h

Tripathi, 2014, Fine-tuning control on CNT diameter distribution, length and density using thermal CVD growth at atmospheric pressure: an in-depth analysis on the role of flow rate and flow duration of acetylene (C2H2) gas, Appl. Nanosci., 5, 19, 10.1007/s13204-013-0288-8

Shiroishi, 2003, Low temperature growth of carbon nanotube by thermal CVD with FeZrN catalyst, IEEE Conf., 65, 13

Sano, 2010, Methods for carbon nanotubes synthesis, Mater. Chem. Phys., 122, 474, 10.1016/j.matchemphys.2010.03.029

Yang, 2014, Catalytic chemical vapor deposition of methane to carbon nanotubes: copper promoted effect of Ni/MgO catalysts, J. Nanotechnol., 547030

Aksak, 2009, Carbon nanotube diameter tuning using hydrogen amount and temperature on SiO2/Si substrates, J. Optoelectron. Mater. – Symp., 1, 281

Jiang, 2008, Effects of the carbon nanotube length on its chemically modified electrode electrochemical performances, Electrochem. Commun., 10, 424, 10.1016/j.elecom.2008.01.006

Hart, 2006, Uniform and selective CVD growth of carbon nanotubes and nanofibres on arbitrarily microstructured silicon surfaces, Nanotechnology, 70, 1397, 10.1088/0957-4484/17/5/039

Pradan, 2002, Opto-electrical properties of amorphous carbon thin film deposited from natural precursor camphor, Mater. Sci. Eng. B, 96, 24

Lee, 2005, Growth mechanism of carbon nanotubes over gold-supported catalysts, Sci. Technol. Adv. Mater., 6, 402, 10.1016/j.stam.2005.03.016

Li, 2007, Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection, Communication, 129, 15770

He, 2010, Predominant (6,5) single-walled carbon nanotube growth on a copper-promoted iron catalyst, Communication, 132, 13994

Maoshuai, 2012, Growth mechanism of single-walled carbon nanotubes on iron–copper catalyst and chirality studies by electron diffraction, Chem. Mater., 24, 1796, 10.1021/cm300308k

Wang, 2013, Chiral-selective CoSO4/SiO2 catalyst for (9,8) single-walled carbon nanotube growth, ACS Nano, 67, 614, 10.1021/nn3047633

Noda, 2007, Millimeter-thick single-walled carbon nanotube forests: hidden role of catalyst support, Jpn. J. Appl. Phys., 46, 17, 10.1143/JJAP.46.L399

Hata, 2004, Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes, Science, 306, 1362, 10.1126/science.1104962

Ding, 2003, Synthesis of carbon nanostructures on nanocrystalline Ni–Ni3P catalyst supported by SiC whiskers, Carbon, 41, 579, 10.1016/S0008-6223(02)00339-1

Murakami, 2004, Raman study of SWNTs grown by CCVD method on SiC, Thin Solid Films, 464, 319, 10.1016/j.tsf.2004.06.037

Baker, 1972, Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene, J. Catal., 26, 51, 10.1016/0021-9517(72)90032-2

Baker, 1973, Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene, J. Catal., 30, 86, 10.1016/0021-9517(73)90055-9

Kitiyanan, 2000, Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co–Mo catalysts, Chem. Phys. Lett., 317, 497, 10.1016/S0009-2614(99)01379-2

Mattevi, 2008, In-situ X-ray photoelectron spectroscopy study of catalyst–support interactions and growth of carbon nanotube forests, J. Phys. Chem., 112, 12207

Cheung, 2002, Diameter-controlled synthesis of carbon nanotubes, J. Phys. Chem. B, 106, 2429, 10.1021/jp0142278

Hongo, 2002, Chemical vapor deposition of single-wall carbon nanotubes on iron-film-coated sapphire substrates, Chem. Phys. Lett., 361, 349, 10.1016/S0009-2614(02)00963-6

Colomer, 2000, Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method, Chem. Phys. Lett., 317, 83, 10.1016/S0009-2614(99)01338-X

Ward, 2003, Chem. Phys. Lett., 376, 717, 10.1016/S0009-2614(03)01067-4

Ago, 2004, Growth of double-wall carbon nanotubes with diameter-controlled iron oxide nanoparticles supported on MgO, Chem. Phys. Lett., 391, 308, 10.1016/j.cplett.2004.04.110

Couteau, 2003, Effects of carbon nanotubes on grain boundary, Chem. Phys. Lett., 378, 9, 10.1016/S0009-2614(03)01218-1

Willems, 2000, Control of the outer diameter of thin carbon nanotubes synthesized by catalytic decomposition of hydrocarbons, Chem. Phys. Lett., 317, 71, 10.1016/S0009-2614(99)01300-7

Sazbo, 2003, Wash and go: sodium choloride as an easily removeable catalyst support for the synthesis of carbon nanotubes, Phys. Chem. Commun., 6, 40

Chai, 2006, Preparation of carbon nanotubes over cobalt-containing catalysts via catalytic decomposition of methane, Phys. Chem. Lett., 426, 345, 10.1016/j.cplett.2006.05.026

Qingwen, 2002, Low-temperature chemical vapor deposition (CVD) growth of single-walled carbon nanotubes, J. Mater. Chem., 12, 1179, 10.1039/b109763f

Su, 2000, Lattice-oriented growth of single-walled carbon nanotubes, J. Phys. Chem. B, 104, 6505, 10.1021/jp0012404

Maret, 2007, Oriented growth of single-walled carbon nanotubes, Carbon, 45, 180, 10.1016/j.carbon.2006.07.016

He, 2011, Growth of carbon nanotubes in six orthogonal directions on spherical alumina microparticles, Carbon, 49, 2273, 10.1016/j.carbon.2011.01.060

de los Arcos, 2002, Influence of iron–silicon interaction on the growth of carbon nanotubes produced by chemical vapor deposition, Appl. Phys. Lett., 80, 2383, 10.1063/1.1465529

Talapatra, 2006, Direct growth of aligned carbon nanotubes on bulk metals, Nat. Nanotechnol., 1, 112, 10.1038/nnano.2006.56

Nessim, 2009, Low temperature synthesis of vertically aligned carbon nanotubes with electrical contact to metallic substrates enabled by thermal decomposition of the carbon feedstock, Nano Lett., 9, 3398, 10.1021/nl900675d

Chhowalla, 2001, Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition, J. Appl. Phys., 90, 5308, 10.1063/1.1410322

Ryu, 2003, Vertically aligned carbon nanofibers and related structures, Jpn. J. Appl. Phys., 42, 3578, 10.1143/JJAP.42.3578

Nehei, 2003, Evaluation of thermal resistance of carbon nanotube film fabricated using an improved slope control of temperature profile growth, Jpn. J. Appl. Phys., 42, 721

Campbell, 2002, Random networks of carbon nanotubes as an electronic material, Appl. Phys. Lett., 458, 1117

Lee, 2001, Diameter-controlled growth of carbon nanotubes using thermal chemical vapor deposition, Chem. Phys. Lett., 341, 245, 10.1016/S0009-2614(01)00481-X

Delzit, 2002, J. Phys. Chem. B, 106, 5629, 10.1021/jp0203898

Zhang, 2005, tuning of vertically-aligned carbon nanotube diameter and areal density through catalyst pre-treatment, Proc. Natl. Acad. Sci. USA, 102, 16141, 10.1073/pnas.0507064102

Xiong, 2006, Carbon, 44, 969, 10.1016/j.carbon.2005.10.015

Hart, 2006, Rapid growth and flow-mediated nucleation of millimeter-scale aligned carbon nanotube structures from a thin-film catalyst, J. Phys. Chem. B, 110, 8250, 10.1021/jp055498b

Delzeit, 2001, Multilayered metal catalysts for controlling the density of single walled carbon nanotube growth, Chem. Phys. Lett., 348, 368, 10.1016/S0009-2614(01)01148-4

Burt, 2009, Electrochemistry at carbon nanotube forests: sidewalls and closed ends allow fast electron transfer, J. Phys. Chem. C, 113, 15133, 10.1021/jp902117g

Nessim, 2009, Low temperature synthesis of vertically aligned carbon nanotubes with electrical contact to metallic substrates enabled by thermal decomposition of the carbon feedstock, Nano Lett., 9, 3398, 10.1021/nl900675d

Christen, 2004, Rapid growth of long, vertically aligned carbon nanotubes through efficient catalyst optimization using metal film gradients, Nano Lett., 4, 1939, 10.1021/nl048856f

Eres, 2004, In situ control of the catalyst efficiency in chemical vapor deposition of vertically aligned carbon nanotubes on pre-deposited metal catalyst films, Appl. Phys. Lett., 84, 1759, 10.1063/1.1668325

Delzeit, 2001, Multiwalled carbon nanotubes by chemical vapor deposition using multilayered metal catalysts, Chem. Phys. Lett., 348, 368, 10.1016/S0009-2614(01)01148-4

Zhu, 2003, A catalytic chemical vapor deposition synthesis of double-walled carbon nanotubes over metal catalysts supported on a mesoporous material, Chem. Phys. Lett., 380, 496, 10.1016/j.cplett.2003.09.049

Ramesh, 2005, Selective chemical vapor deposition synthesis of double-wall carbon nanotubes on mesoporous silica, J. Phys. Chem. B, 109, 1141, 10.1021/jp0465736

Li, 1996, Large-scale synthesis of aligned carbon nanotubes, Science, 274, 1701, 10.1126/science.274.5293.1701

Fan, 1999, Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science, 283, 512, 10.1126/science.283.5401.512

Sohn, 2001, Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays, Appl. Phys. Lett., 78, 901, 10.1063/1.1335846

Lee, 2001, Diameter-controlled growth of carbon nanotubes using thermal chemical vapor deposition, Chem. Phys. Lett., 341, 245, 10.1016/S0009-2614(01)00481-X

Xu, 1999, Synthesis of silicon carbide nanowires in a catalyst-assisted process, Appl. Phys. Lett., 74, 2549, 10.1063/1.123894

Wei, 2001, Appl. Phys. Lett., 78, 1394, 10.1063/1.1354658

Kichambare, 2002, Thin film metallic catalyst coatings for the growth of multiwalled carbon nanotubes by pyrolysis of xylene, Carbon, 40, 1903, 10.1016/S0008-6223(02)00033-7

Ikuno, 2003, Structural characterization of randomly and vertically oriented carbon nanotube films grown by chemical vapour deposition, Surf. Interface Anal., 35, 15, 10.1002/sia.1485

Hafner, 1998, Catalytic growth of single-wall carbon nanotubes from metal particles, Chem. Phys. Lett., 296, 195, 10.1016/S0009-2614(98)01024-0

Luo, 2002, Catalysts effect on morphology of carbon nanotubes prepared by catalytic chemical vapor deposition in a nano-agglomerate bed, Phys. B: Condens. Matter, 323, 314, 10.1016/S0921-4526(02)01039-6

Avdeeva, 1996, Iron-containing catalysts of methane decomposition: accumulation of filamentous carbon, Appl. Catal. A, 141, 117, 10.1016/0926-860X(96)00026-9

Li, 2001, Straight carbon nanotube Y junctions, Appl. Phys. Lett., 79, 1879, 10.1063/1.1404400

Delzeit, 2002, Growth of multiwall carbon nanotubesin an industry coupled plasma reactor, J. Appl. Phys., 91, 6027, 10.1063/1.1465101

Ng, 2003, Growth of carbon nanotubes: a combinatorial method to study the effect of catalysts and underlayers, J. Phys. Chem. B, 107, 8484, 10.1021/jp034198w

Nishiyama, 1974, Gasification of carbon deposited on supported Ni–Cu catalysts, J. Catal., 33, 98, 10.1016/0021-9517(74)90249-8

Nolan, 1998, Comparative flame and furnace synthesis of single walled carbon nanotubes, J. Phys. Chem. B, 102, 4165, 10.1021/jp980996o