Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates
Tóm tắt
Từ khóa
Tài liệu tham khảo
Radushkevich, 1952, 26, 88
Harris, 1999
Shah, 2013
Dai, 2003, Aligned carbon nanotubes, Phys. Chem., 4, 1150
Qian, 2006, Fabrication of small diameter few-walled carbon nanotubes with enhanced field emission property, J. Nanosci. Nanotechnol., 6, 1346, 10.1166/jnn.2006.140
Qi, 2006, Synthesis of high purity few walled carbon nanotubes from ethanol/methanol mixture, Chem. Mater., 18, 5691, 10.1021/cm061528r
Hou, 2009, Functionalized few walled carbon nanotubes for mechanical reinforcement of polymeric composites, ACS Nano, 3, 1057, 10.1021/nn9000512
Zhu, 2002, Direct synthesis of long single-walled carbon nanotube, Science, 296, 884, 10.1126/science.1066996
Wang, 2006, Vertically aligned carbon nanotube arrays, Appl. Phys. Lett., 88, 213111, 10.1063/1.2206152
Hamada, 1992, New one-dimensional conductors: graphitic microtubules, Phys. Rev. Lett., 68, 1579, 10.1103/PhysRevLett.68.1579
Yu, 2000, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties, Phys. Rev. Lett., 84, 5552, 10.1103/PhysRevLett.84.5552
Yu, 2000, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, 287, 637, 10.1126/science.287.5453.637
Wong, 1997, Atomic force strength and toughness of nanorods and nanotubes, Science, 277, 1971, 10.1126/science.277.5334.1971
Demczyk, 2002, Direct mechanical measurement of tensile strength and elastic modulus of multi-walled carbon nanotubes, Mater. Sci. Eng. A, 334, 173, 10.1016/S0921-5093(01)01807-X
Hone, 1999, Thermal conductivity of single-walled carbon nanotubes, Phys. Rev. B, 59, R2514, 10.1103/PhysRevB.59.R2514
Kim, 2001, Thermal transport measurements of individual multiwalled nanotubes, Phys. Rev. Lett., 87, 215502, 10.1103/PhysRevLett.87.215502
Teo, 2003, Catalytic synthesis of carbon nanotubes and nanofibers, Nanosci. Nanotechnol., 1
Odom, 1998, Atomic structure and electronic properties of single-walled carbon nanotubes, Nature, 391, 62, 10.1038/34145
Forro, 2001, Carbon Nanotube Synthesis, Structure, Properties And Applications
Thess, 1996, Crystalline ropes of metallic carbon nanotubes, Science, 273, 483, 10.1126/science.273.5274.483
Schonenberger, 1999, Interference and interaction in multi-wall carbon nanotube, Appl. Phys. A, 69, 283, 10.1007/s003390051003
de Heer, 2000, Nanotubes and the pursuit of applications, Phys. World, 13, 49
Baughman, 2002, Carbon nanotubes – the route toward applications, Science, 297, 787, 10.1126/science.1060928
De Volder, 2013, Carbon nanotubes: present and future commercial applications, Science, 339, 535, 10.1126/science.1222453
Jariwala, 2013, Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing, Chem. Soc. Rev., 42, 2824, 10.1039/C2CS35335K
Fam, 2011, A review on technological aspects influencing commercialization of carbon nanotube sensors, Sens. Actuators, 157, 1, 10.1016/j.snb.2011.03.040
Prasek, 2011, Chemical vapor deposition for carbon nanotubes synthesis, J. Mater. Chem., 21, 15872, 10.1039/c1jm12254a
Kumar, 2010, Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production, J. Nanosci. Nanotechnol., 10, 3739, 10.1166/jnn.2010.2939
Hirlekar, 2009, Carbon nanotubes and its applications, Asian J. Pharm. Clin. Res., 65, 17
Vashit, 2011, Advances in carbon nanotube based electrochemical sensors for bio-analytical applications, Biotechnol. Adv., 29, 169, 10.1016/j.biotechadv.2010.10.002
Collins, 2000, Multishell conduction in multiwalled carbon nanotubes, Appl. Phys. A Mater. Sci. Process., 283, 329
Ajayan, 1999, Synthesis of peptide attached carbon nanotube network for bio-medical applications, Chem. Rev., 99, 1787, 10.1021/cr970102g
Chen, 2010, Controlled growth and modification of vertically-aligned carbon nanotubes, Mater. Sci. Eng., 70, 63, 10.1016/j.mser.2010.06.003
Endo, 2006, Development and application of carbon nanotubes, Jpn. J. Appl. Phys., 45, 4883, 10.1143/JJAP.45.4883
Robertson, 2012, Applications of carbon nanotubes grown by chemical vapour deposition, Jpn. J. Appl. Phys., 51, 1, 10.1143/JJAP.51.01AH01
Dai, 2001, Controlled synthesis and modification of carbon nanotubes and C60: carbon nanostructures for advanced polymeric composite materials, Adv. Mater., 13, 899, 10.1002/1521-4095(200107)13:12/13<899::AID-ADMA899>3.0.CO;2-G
Coleman, 2006, A review of the mechanical properties of carbon nanotube–polymer composites, Carbon, 441, 624
Thostenson, 2005, Nanocomposites in context, Compos. Sci. Technol., 65491
Thostenson, 2001, Advances in the science and technology of carbon nanotubes and their composites: a review, Compos. Sci. Technol., 61, 1899, 10.1016/S0266-3538(01)00094-X
Coleman, 2006, Mechanical reinforcement of polymers using carbon nanotubes, Adv. Mater., 18, 689, 10.1002/adma.200501851
Moniruzzaman, 2006, Polymer nanocomposites containing carbon nanotubes, Macromolecules, 39, 5194, 10.1021/ma060733p
Cola, 2008, Effects of growth temperature on carbon nanotube array thermal interfaces, J. Heat Transf., 130, 114503, 10.1115/1.2969758
Mukai, 2009, Highly conductive sheets from millimeter-long single-walled carbon nanotubes and ionic liquids: application to fast-moving, low-voltage electromechanical actuators operable in air, Adv. Mater., 20, 1582, 10.1002/adma.200802817
Aliev, 2009, Giant-stroke, super elastic carbon nanotube aerogel muscles, Science, 323, 1575, 10.1126/science.1168312
Simon, 2008, Materials for electrochemical capacitors, Nat. Mater., 7845
Grimsdale, 2005, New carbon-rich materials for electronics, lithium batteries, and hydrogen storage applications, Chem. Commun., 41, 2197, 10.1039/b418172g
Pushparaj, 2007, Flexible energy storage devices based on nanocomposite, Proc. Natl. Acad. Sci., 10413574
Jiang, 2002, Nanotechnology: spinning continuous carbon nanotube yarns, Nature, 419, 801, 10.1038/419801a
Zhang, 2004, Multifunctional carbon nanotube yarns by downsizing an ancient technology, Science, 306, 1358, 10.1126/science.1104276
Zhang, 2005, Strong, transparent, multifunctional, carbon nanotube sheets, Science, 309, 1215, 10.1126/science.1115311
Zhang, 2006, Spinning and processing continuous yarns from 4in. wafer scale super-aligned carbon nanotube arrays, Adv. Mater., 18, 1505, 10.1002/adma.200502528
Li, 2007, Structure-dependent electrical properties of carbon nanotube fibers, Adv. Mater., 19, 3358, 10.1002/adma.200602966
Zhang, 2007, Ultra strong, stiff, and lightweight carbon-nanotube fibers, Adv. Mater., 19, 4198, 10.1002/adma.200700776
Zhang, 2007, Strong carbon nanotube fibers spun from long carbon nanotube arrays, Small, 3, 244, 10.1002/smll.200600368
Liu, 2009, Controlled growth and modification of vertically-aligned, Sensors, 9, 7343, 10.3390/s90907343
Balasubramanian, 2006, Biosensors based on carbon nanotubes, Anal. Bioanal. Chem., 385, 452, 10.1007/s00216-006-0314-8
Zhang, 2009, Carbon-based materials as super capacitor electrodes, Chem. Soc. Rev., 38, 2520, 10.1039/b813846j
Liu, 2008, Oriented nanostructures for energy conversion and storage, ChemSusChem, 1, 676, 10.1002/cssc.200800087
Umeyama, 2008, Metallic single walled carbon nanotubes for electrically conductive materials and devices, Energy Environ. Sci., 1, 1120
Endo, 2008, Potential applications of carbon nanotubes, Top. Appl. Phys., 111, 13, 10.1007/978-3-540-72865-8_2
Cheng, 2008, Template-directed materials for rechargeable lithium-ion batteries, Chem. Mater., 20, 667, 10.1021/cm702091q
Liu, 2006, Carbon nanotubes: advanced topics in the synthesis, J. Power Sour., 155, 95, 10.1016/j.jpowsour.2006.01.030
Cao, 2009, Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects, Adv. Mater., 21, 29, 10.1002/adma.200801995
Fan, 1999, Carbon nanotubes: synthesis, integration, and properties, Science, 283, 512, 10.1126/science.283.5401.512
Choi, 1999, Fully sealed, high-brightness carbon-nanotube field-emission display, Appl. Phys. Lett., 75, 3129, 10.1063/1.125253
Rinzler, 1995, Unrevealing nanotubes – field-emission from an atomic wire, Science, 269, 1550, 10.1126/science.269.5230.1550
Han, 2002, Vertically aligned carbon nanotubes grown at low temperatures for use in displays, Appl. Phys. Lett., 81, 2070, 10.1063/1.1506408
Lee, 2001, Realization of gated field emitters for electro-photonic applications using carbon nanotube line emitters directly grown into sub-micrometer holes, Adv. Mater., 13, 479, 10.1002/1521-4095(200104)13:7<479::AID-ADMA479>3.0.CO;2-H
Chung, 2002, Carbon nanotube electron emitters with a gated structure using backside exposure processes, Appl. Phys. Lett., 80, 4045, 10.1063/1.1480104
Choi, 2001, Lateral field emitters fabricated using carbon nanotubes, Appl. Phys. Lett., 78, 1547, 10.1063/1.1349870
Yue, 2002, Growth of multi-walled carbon nanotube arrays by chemical vapour deposition over iron catalyst and the effect of growth parameters, Appl. Phys. Lett., 81, 355, 10.1063/1.1492305
Rosen, 2000, Application of carbon nanotubes as electrodes in gas discharge tubes, Appl. Phys. Lett., 76, 1668, 10.1063/1.126130
Nishijima, 1999, Carbon-nanotube tips for scanning probe microscopy: preparation by a controlled process and observation of deoxyribonucleic acid, Appl. Phys. Lett., 74, 4061, 10.1063/1.123261
Nguyen, 2001, Vertically aligned carbon nanofibers and related structures, Nanotechnology, 12, 363, 10.1088/0957-4484/12/3/326
Burch, 2006, Electrical conductance and breakdown in individual CNT multi-walled nanotubes, Appl. Phys. Lett., 89, 143110, 10.1063/1.2358308
Tans, 1998, Room-temperature transistor based on a single carbon nanotube, Nature, 393, 49, 10.1038/29954
Martel, 1998, Single and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett., 73, 2447, 10.1063/1.122477
Derycke, 2001, Carbon nanotube inter- and intra-molecular logic gates, Nano Lett., 1, 453, 10.1021/nl015606f
Bachtold, 2001, Logic circuits with carbon nanotube transistors, Science, 294, 1317, 10.1126/science.1065824
Hoenlein, 2006, Carbon nanotube applications in microelectronics, Micro-electron. Eng., 83, 619, 10.1016/j.mee.2005.12.018
Kreupl, 2002, Carbon nanotubes in interconnect applications, Micro-electron. Eng., 64, 399, 10.1016/S0167-9317(02)00814-6
Wei, 2008, The intra-molecular junctions of carbon nanotubes, Adv. Mater., 20, 2815, 10.1002/adma.200800589
Wagner, 1964, Vapour–liquid–solid mechanism of single crystal growth, Appl. Phys. Lett., 4, 89, 10.1063/1.1753975
Joselevich, 2008, Carbon nanotube synthesis and organization, Top. Appl. Phys., 111, 101, 10.1007/978-3-540-72865-8_4
Saifuddin, 2013, Carbon nanotubes: a review on structure and their interaction with proteins, J. Chem., 1, 10.1155/2013/676815
Nessim, 2010, Properties, synthesis, and growth mechanism of carbon nanotubes with special focus on thermal chemical vapour deposition, Nanoscale, 2, 1306, 10.1039/b9nr00427k
Takagi, 2006, Single-walled carbon nanotube growth from highly activated metal nanoparticles, Nano Lett., 6, 2642, 10.1021/nl061797g
Zhou, 2006, Copper catalyzing growth of single-walled carbon nanotubes on substrates, Nano Lett., 6, 2987, 10.1021/nl061871v
Yuan, 2008, Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts, Nano Lett., 8, 2576, 10.1021/nl801007r
Lee, 2005, Synthesis of carbon nanotubes over gold nanoparticle supported catalysts, Carbon, 43, 2654, 10.1016/j.carbon.2005.05.045
Yoshihara, 2008, Growth mechanism of carbon nanotubes over gold-supported catalysts, Jpn. J. Appl. Phys., 47, 1944, 10.1143/JJAP.47.1944
Liu, 2008, Effect of ambient gas on the catalytic properties of Au in single-walled carbon nanotube growth, Appl. Phys. Express, 1, 14001, 10.1143/APEX.1.014001
Steiner, 2009, Nanoscale zirconia as a non-metallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes, J. Am. Chem. Soc., 131, 12144, 10.1021/ja902913r
Uchino, 2005, Metal catalyst-free low-temperature carbon nanotube growth on SiGe islands, Appl. Phys. Lett., 86, 233110, 10.1063/1.1946191
Takagi, 2007, Carbon nanotube growth from semiconductor nanoparticles, Nano Lett., 7, 2272, 10.1021/nl0708011
T. Uchino, K. N. Bourdakos, G.N. Ayre, C.H. De Groot, P. Ashburn, D.C. Smith, in: L.-C. Chen, D.B. Geohegan, J. Robertson, Z.L. Wang (eds.), Materials Research Society Symposium Proceedings, Warrendale, PA, vol. 1081, 2008, pp. 1–9.
Uchino, 2009, Growth of single-walled carbon nanotubes using germanium nano-crystals formed by implantation, J. Electrochem. Soc., 156, K144, 10.1149/1.3147248
Magrez, 2010, Low-temperature, highly efficient growth of carbon nanotubes on functional materials by an oxidative dehydrogenation reaction, Materials, 3, 4871, 10.3390/ma3114871
Dupuis, 2005, The catalyst in the CCVD of carbon nanotubes – a review, Mater. Sci., 50, 929
Rafique, 2011, Production of carbon nanotubes by different routes – a review, J. Encapsul. Adsorpt. Sci., 1, 29, 10.4236/jeas.2011.12004
Koziol, 2010, Synthesis of carbon nanostructures by CVD, carbon and oxide nanostructures, Adv. Struct. Mater., 5, 23, 10.1007/8611_2010_12
Walker, 1959, Carbon formation from carbon monoxide-hydrogen mixtures over iron catalysts, J. Phys. Chem., 63, 133, 10.1021/j150572a002
Dresselhaus, 1988
Li, 1996, Large scale synthesis of aligned carbon nanotubes, Science, 274, 1701, 10.1126/science.274.5293.1701
Tempel, 2010, Ink jet printing of ferritin as method for selective catalyst patterning and growth of multi-walled carbon nanotubes, Mater. Chem. Phys., 121, 178, 10.1016/j.matchemphys.2010.01.029
Dai, 1996, Chem. Phys. Lett., 260471
Phillippe Tessonnier, 2011, Recent progress on the growth mechanism of carbon nanotubes: a review, ChemSusChem, 4, 824, 10.1002/cssc.201100175
Cheung, 2002, J. Phys. Chem. B, 1062429
A. G. Nasibulin, A. Moisala, D. P. Brown, E.I. Kauppinen, Carbonat Press, 2003.
Cassell, 1999, J. Phys. Chem. B, 1036484
Patole, 2008, Optimization of water assisted chemical vapor deposition parameters for super growth of carbon nanotubes, Carbon, 46, 1987, 10.1016/j.carbon.2008.08.009
Byon, 2007, A synthesis of high purity single-walled carbon nanotubes from small diameters of cobalt nanoparticles by using oxygen-assisted chemical vapor deposition process, Bull. Korean Chem. Soc., 28, 2056, 10.5012/bkcs.2007.28.11.2056
Prasek, 2011, Methods for carbon nanotubes synthesis – review, J. Mater. Chem., 21, 15872, 10.1039/c1jm12254a
Varshney, 2010, Growth and field emission study of a monolithic carbon nanotube/diamond composite, Carbon, 48, 3353, 10.1016/j.carbon.2010.05.025
Brown, 2011, Growth of vertically aligned bamboo-like carbon nanotubes from ammonia/methane precursors using a platinum catalyst, Carbon, 49, 266, 10.1016/j.carbon.2010.09.018
Xu, 2011, Chirality-enriched semiconducting carbon nanotubes synthesized on high surface area MgO-supported catalyst, Mater. Lett., 65, 1878, 10.1016/j.matlet.2011.03.040
Dai, 2002, Carbon nanotubes: opportunities and challenges, Surf. Sci., 500, 218, 10.1016/S0039-6028(01)01558-8
Kumar, 2003, Camphor – a botanical precursor producing garden of carbon nanotubes, Diam. Relat. Mater., 12, 998, 10.1016/S0925-9635(02)00341-2
Endo, 1988, Grow carbon fibres in the vapour phase, ChemTech, 18, 568
Schützenberger, 1890, History of carbon nanotubes, Science, 111, 774
Nasibulin, 2006, Carbon nanotube synthesis from alcohols by a novel aerosol method, J. Nanopart. Res., 8, 465, 10.1007/s11051-005-9027-8
Ku, 2006, In situ structure characterization of airborne carbon nanofibres by tandem mobility? mass analysis, Nanotechnology, 17, 3613, 10.1088/0957-4484/17/14/042
Pinault, 2005, Evidence of sequential lift in growth of aligned multiwalled carbon nanotube multilayers, Nano Lett., 5, 2394, 10.1021/nl051472k
Mayne, 2001, Pyrolytic production of aligned carbon nanotubes, Chem. Phys. Lett., 338, 101, 10.1016/S0009-2614(01)00278-0
Reyes-Reyes, 2004, Efficient encapsulation, of gaseous nitrogen inside carbon nanotubes with bomboo-like structure using aerosol thermolysis, Chem. Phys. Lett., 396, 167, 10.1016/j.cplett.2004.07.125
Kamalakaran, 2003, In-situ formation of carbon nanotubes in an alumina–nanotube composite by spray pyrolysis, Carbon, 41, 2737, 10.1016/S0008-6223(03)00380-4
Braidy, 2002, Single-wall carbon nanotubes synthesis by means of UV laser vaporization, Chem. Phys. Lett., 354, 88, 10.1016/S0009-2614(02)00110-0
Zhong, 2005, Low temperature synthesis of extremely dense and vertically aligned single-walled carbon nanotubes, Jpn. J. Appl. Phys., 44, 1558, 10.1143/JJAP.44.1558
Kiselev, 2006, Extreme-length carbon nanofilaments with single-walled nanotube cores grown by pyrolysis of methane or acetylene, Carbon, 44, 2289, 10.1016/j.carbon.2006.02.020
Grobert, 2000, A novel route to aligned nanotubes and nanofibres using laser-patterned catalytic substrates, Appl. Phys. A, 70, 175, 10.1007/s003390050030
Wang, 2006, Direct synthesis of BCN single-walled nanotubes by bias-assisted hot filament chemical vapor deposition, J. Am. Chem. Soc., 128, 6530, 10.1021/ja0606733
Ewels, 2005, Nitrogen doping in carbon nanotubes, J. Nanosci. Nanotechnol., 5, 1345, 10.1166/jnn.2005.304
Lozano-Castelló, 2004, Preparation and characterisation of novel “sea-cucumber”-like structures containing carbon and boron, Carbon, 42, 2223, 10.1016/j.carbon.2004.04.029
Terrones, 2002, Synthetic routes to nanoscale BxCyNz architectures, Carbon, 40, 1665, 10.1016/S0008-6223(02)00008-8
Satishkumar, 1998, Single-walled nanotubes by the pyrolysis of acetylene-organometallic mixtures, Chem. Phys. Lett., 293, 47, 10.1016/S0009-2614(98)00727-1
Trasobares, 2002, Compartmentalized carbon nanotubes: chemistry, morphology and growth, J. Chem. Phys., 116, 8966, 10.1063/1.1473195
Trasobares, 2001, Electron beam puncturing of carbon nanotube containers for release of stored N2 gas, Eur. Phys. J. B, 22, 117
Palizdar, 2011, Investigation of Fe/MgO catalyst support precursors for the chemical vapour deposition growth of carbon nanotubes, J. Nanosci. Nanotechnol., 11, 5345, 10.1166/jnn.2011.3787
Plata, 2010, Multiple alkynes react with ethylene to enhance carbon nanotube synthesis, suggesting a polymerization-like formation mechanism, ACS Nano, 7185, 10.1021/nn101842g
Hernadi, 1996, Fe catalyzed carbon nanotube formation, Carbon, 34, 1249, 10.1016/0008-6223(96)00074-7
Kong, 1998, Chemical vapor deposition of methane for single-walled carbon nanotubes, Chem. Phys. Lett., 292, 567, 10.1016/S0009-2614(98)00745-3
He, 2011, Growth of carbon nanotubes in six orthogonal directions on spherical alumina microparticles, Carbon, 49, 2273, 10.1016/j.carbon.2011.01.060
Li, 1996, Large scale synthesis of aligned carbon nanotubes, Science, 274, 1701, 10.1126/science.274.5293.1701
Tomie, 2010, Prospective growth region for chemical vapor deposition synthesis of carbon nanotube on C–H–O ternary diagram, Diam. Relat. Mater., 19, 1401, 10.1016/j.diamond.2010.08.005
Sen, 1997, Carbon nanotubes by the metallocene route, Chem. Phys. Lett., 267, 276, 10.1016/S0009-2614(97)00080-8
Narkiewicz, 2010, Catalytic decomposition of hydrocarbons on cobalt, nickel and iron catalysts to obtain carbon nanomaterials, Appl. Catal. A, 384, 27, 10.1016/j.apcata.2010.05.050
Satiskumar, 1999, Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene–hydrocarbon mixtures: role of the metal nanoparticles produced in situ, Chem. Phys. Lett., 307, 158, 10.1016/S0009-2614(99)00521-7
Shirazi, 2011, Effects of different carbon precursors on synthesis of multiwall carbon nanotubes: purification and functionalization, Appl. Surf. Sci., 257, 7359, 10.1016/j.apsusc.2011.03.146
Wei, 2002, Microfabrication technology: organized assembly of carbon nanotubes, Nature, 416, 495, 10.1038/416495a
Nikolaev, 1999, Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chem. Phys. Lett., 313, 91, 10.1016/S0009-2614(99)01029-5
Santangelo, 2010, An overview of nanoparticles effect on mechanical properties of composites, J. Mater. Sci., 45, 783, 10.1007/s10853-009-4001-y
Hou, 2011, Decomposition of ethanol and di-methyl ether during chemical vapour deposition synthesis of single-walled carbon nanotubes, Jpn. J. Appl. Phys., 50, 4, 10.7567/JJAP.50.065101
Yong, 2011, Synthesis of heterostructured helical carbon nanotubes by iron-catalyzed ethanol decomposition, Micron, 42, 547, 10.1016/j.micron.2011.01.007
Parthasarathy, 1995, Template synthesis of graphitic nanotubules, Adv. Mater., 7, 896, 10.1002/adma.19950071103
Kyotani, 1996, Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film, Chem. Mater., 8, 2109, 10.1021/cm960063+
Ghosh, 2007, A simple method of producing single-walled carbon nanotubes from a natural precursor: Eucalyptus oil, Mater. Lett., 61, 3768, 10.1016/j.matlet.2006.12.030
Afre, 2005, Growth of vertically aligned carbon nanotubes on silicon and quartz substrate by spray pyrolysis of a natural precursor: turpentine oil, Chem. Phys. Lett., 414, 6, 10.1016/j.cplett.2005.08.040
Sharon, 2007, Hydrogen storage by carbon materials synthesized from oil seeds and fibrous plant materials, Int. J. Hydrog. Energy, 32, 4238, 10.1016/j.ijhydene.2007.05.038
Kumar, 2011, Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: neem oil, Nano Res. Lett., 6, 215, 10.1186/1556-276X-6-92
M. Endo, H. Fijiwara, E. Fukunaga, Carbon materials for advanced technologies, in: 18th Meeting Japanese Carbon Society, Japanese Carbon Society, Saitama, December 1991
M. Endo, K. Takeuchi, S. Igarashi, K. Kobori, M. Shiraishi, H.W. Kroto, Carbon materials, in: 19th Meeting Japanese Carbon Society, Japanese Carbon Society, Kyoto, December 1992
Endo, 1993, The production and structure of pyrolytic carbon nanotubes (PCNTs), J. Phys. Chem. Solids, 4, 1841, 10.1016/0022-3697(93)90297-5
Jose-Yacaman, 1993, Catalytic growth of carbon microtubules with fullerene structure, Appl. Phys. Lett., 62, 657, 10.1063/1.108857
Nerushev, 2003, Particle size dependence and model for iron-catalyzed growth of carbon nanotubes by thermal chemical vapor deposition, Jpn. J. Appl. Phys., 93, 4185, 10.1063/1.1559433
Dai, 1996, Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide, Chem. Phys. Lett., 260, 471, 10.1016/0009-2614(96)00862-7
Hafner, 1998, Catalytic growth of single-wall carbon nanotubes from metal particles, Chem. Phys. Lett., 296, 195, 10.1016/S0009-2614(98)01024-0
Kong, 1998, Carbon nanotubes: a review on structure and their interaction with proteins, Chem. Phys. Lett., 292, 567, 10.1016/S0009-2614(98)00745-3
Flahaut, 1999, Carbon nanotube–metal–oxide nanocomposites: microstructure, electrical conductivity and mechanical properties, Chem. Phys. Lett., 300, 236, 10.1016/S0009-2614(98)01304-9
Cheng, 1998, Bulk morphology and diameter distribution of single walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons, Chem. Phys. Lett., 289, 602, 10.1016/S0009-2614(98)00479-5
Maruyama, 2003, Synthesis of single-walled carbon nanotubes with narrow diameter-distribution from fullerene, Chem. Phys. Lett., 375, 553, 10.1016/S0009-2614(03)00907-2
Gruneis, 2006, Growth of carbon nanotubes from wet chemistry and thin film multilayer catalysts, Phys. Status Solidi, 243, 3054, 10.1002/pssb.200669175
Maruyama, 2002, Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol, Chem. Phys. Lett., 360, 229, 10.1016/S0009-2614(02)00838-2
Gruneis, 2006, High quality double wall carbon nanotubes, Carbon, 44, 3177
Murakami, 2003, Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substrates, Chem. Phys. Lett., 377, 3817, 10.1016/S0009-2614(03)01094-7
Murakami, 2004, Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy, Chem. Phys. Lett., 385, 298, 10.1016/j.cplett.2003.12.095
Maruyama, 2005, Polarization dependence of resonant Raman scattering from vertically aligned single-walled carbon nanotube films, Chem. Phys. Lett., 403, 320, 10.1016/j.cplett.2005.01.031
Xiang, 2009, Low dimensional heat and mass transport in carbon nanotubes, J. Phys. Chem. C, 113, 7511, 10.1021/jp810454f
Joshi, 2010, Chemical vapour deposition process with a Ni-catalyst layer, J. Mater. Chem., 20, 1717, 10.1039/b919579c
Han, 2009, Carbon nanotube synthesis and growth mechanism, J. Nanomater., 562376
Sankaran, 2008, Hydriding of nitrogen contain carbon nanotubes, Indian J. Chem., 47, 808
Tang, 1998, Mono-sized single-wall carbon nanotubes formed in channels of AlPO4-5 single crystal, Appl. Phys. Lett., 73, 2287, 10.1063/1.121704
Yudasaka, 1997, Nitrogen-containing carbon nanotube growth from Ni phthalocyanine by chemical vapor deposition, Carbon, 35, 195, 10.1016/S0008-6223(96)00142-X
Deepak, 2001, Synthetic strategies for Y-junction carbon nanotubes, Chem. Phys. Lett., 345, 5, 10.1016/S0009-2614(01)00849-1
G. Kucukayan, S. Kayacan, B. Baykal, E. Bengu, Materials Research Society Symposium Proceedings on Carbon Nanotubes (Symposium-P)1081E, 312, 2008, pp. 86–92
M. Kumar, X. Zhao, Y. Ando, International Symposium on Nanocarbons Nagano, Japan, Extended Abstract, November 2001, pp. 244–245
Kumar, 2002, Carbon nanotubes from camphor, Mol. Cryst. Liq. Cryst., 387, 117, 10.1080/10587250215228
Kumar, 2003, Single-wall and multi-wall carbon nanotubes from camphor – a botanical hydrocarbon, Diam. Relat. Mater., 12, 998, 10.1016/S0925-9635(02)00341-2
Kumar, 2003, Chemical vapor deposition of carbon nanotubes, Chem. Phys. Lett., 374, 521, 10.1016/S0009-2614(03)00742-5
Kumar, 2004, Field emission from camphor–pyrolyzed carbon nanotubes, Chem. Phys. Lett., 385, 161, 10.1016/j.cplett.2003.12.064
Kumar, 2007, The use of camphor-grown carbon nanotube array as an efficient field emitter, Carbon, 45, 1899, 10.1016/j.carbon.2007.04.023
Yamada, 2006, Synthesis of carbon nanotubes from polycyclic compounds by CVD method, Matter, 320, 163
Somani, 2009, Carbon nanofibers and multiwalled carbon nanotubes from camphor and their field electron emission, Curr. Appl. Phys., 9, 144, 10.1016/j.cap.2008.01.002
Zdrejek, 2015, Synthesis of carbon nanotubes from propane, Chem. Vapor Depos., 21, 1
Li, 2010, Synthesis of well-aligned carbon nanotubes, Chem. Phys. A, 84, 1560
Cui, 2010, Multi-directional growth of aligned carbon nanotubes, Nanoscale Res. Lett., 5, 941, 10.1007/s11671-010-9586-1
Du, 2010, Methods for carbon nanotubes synthesis, Mater. Charact., 61, 427, 10.1016/j.matchar.2010.01.009
Feng, 2010, One-step fabrication of high quality double-walled carbon nanotube thin films by a chemical vapor deposition process, Carbon, 48, 3817, 10.1016/j.carbon.2010.06.046
Ghoranneviss, 2014, Growth of carbon nanotubes on silicon substrate and nickel catalyst by thermal CVD using ethanol, Bull. Environ. Pharmocol. Life Sci., 3, 47
Pradhan, 2002, Carbon nanotubes, nanofilaments and nanobeads by thermal chemical vapor deposition process, Mater. Sci. Eng. B, 96, 24, 10.1016/S0921-5107(02)00309-4
Qian, 2002, Synthesis of carbon nanotubes from liquefied petroleum gas containing sulphur, Carbon, 40, 2968, 10.1016/S0008-6223(02)00244-0
Qiu, 2006, CVD synthesis of coal-gas-derived carbon nanotubes and nanocapsules containing magnetic iron carbide and oxide, Carbon, 44, 2565, 10.1016/j.carbon.2006.05.030
Awadallah, 2012, Synthesis of carbon nanotubes by CCVD of natural gas using hydrotreating catalysts, Egypt. J. Pet., 21, 101, 10.1016/j.ejpe.2012.11.005
Kavita, 2014, Influence of carbon source on synthesis of CNT using chemical vapour deposition, Int. J. Pharm., Chem. Biol. Sci., 10, 188
Kang, 2005, Obtaining carbon nanotubes from grass, Nanotechnology, 16, 1192, 10.1088/0957-4484/16/8/036
Maoshuai He, 2013, Chiral-selective growth of single-walled carbon nanotubes on lattice-mismatched epitaxial cobalt nanoparticles, Sci. Rep., 3, 1
Yang, 2014, Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts, Nature, 510, 522, 10.1038/nature13434
Thess, 1996, Crystalline ropes of metallic carbon nanotubes, Science, 273, 483, 10.1126/science.273.5274.483
Chiang, 2007, Microplasma synthesis of metal nanoparticles for gas-phase studies of catalyzed carbon nanotube growth, Appl. Phys. Lett., 91, 121503, 10.1063/1.2786835
Hart, 2006, Rapid growth and flow-mediated nucleation of millimeter-scale aligned carbon nanotube structures from a thin-film catalyst, J. Phys. Chem. B, 110, 8250, 10.1021/jp055498b
Ding, 2008, The importance of strong carbon–metal adhesion for catalytic nucleation of single-walled carbon nanotubes, Nano Lett., 8, 463, 10.1021/nl072431m
Rümmeli, 2007, Catalyst size dependencies for carbon nanotube synthesis, Phys. Status Solidi B, 244, 3911, 10.1002/pssb.200776136
Takagi, 2009, Carbon nanotube growth from diamond, Communication, 131, 6922
Han, 2005, Template-free directional drowth of single-walled carbon nanotubes on a- and r-plane sapphire, Communication, 127, 5294
Huang, 2009, Metal-catalyst-free growth of single-walled carbon nanotubes on substrates, Communication, 131, 2094
Y. Hu, L. Kang, Q. Zhao, H. Zhong, S. Zhang, L. Yang, Z. Wang, J. Lin, Q. Li, Z. Zhang, L. Peng, Z. Liu, J. Zhang, Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts, Nature Communications 10.1038/ncomms7099
Flahaut, 2005, Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation, Carbon, 43, 375, 10.1016/j.carbon.2004.09.021
Xiang, 2009, Co-based catalysts of carbon nanotubes, Appl. Clay Sci., 42, 405, 10.1016/j.clay.2008.04.004
Karima, 2015, The impact of cadmium loading in Fe/alumina and synthesis temperature on carbon nanotubes growth by chemical vapour deposition method, J. Sci. Islam. Repub. Iran, 26, 17
Harutyunyan, 2002, CVD synthesis of single wall carbon nanotubes, Nano Lett., 2, 525, 10.1021/nl0255101
Grazhulene, 2010, Adsorption properties of carbon nanotubes depending on the temperature of their synthesis and subsequent treatment, J. Anal. Chem., 65, 682, 10.1134/S106193481007004X
Shin, 2006, In situ growth of single-walled carbon nanotubes by bimetallic technique with/without dielectric support for nanodevice applications, J. Vac. Sci. Technol. B, 24, 358, 10.1116/1.2151223
Farzanch, 2008, Preparation of carbon nanotubes by CVD process over nanoparticles of Ni–Ce–Zr mixed oxides, J. Sci., Islam. Repub. Iran, 19, 119
Ghosh, 2015, Synthesis of single-walled carbon nanotubes on graphene layers, Chem. Commun., 5, 8973
Zhang, 2006, Methods for carbon nanotubes synthesis, Mater. Chem. Phys., 97, 415, 10.1016/j.matchemphys.2005.08.036
Zhang, 2005, Preparation and characterization of carbon nanotubes, Mater. Lett., 59, 4044, 10.1016/j.matlet.2005.07.081
Sivakumar, 2011, Optimized parameters for carbon nanotubes synthesis over Fe and Ni catalysts via methane CVD, Adv. Mater. Sci., 27, 25
Scheibe, 2010, Oxidation and reduction of multiwalled carbon nanotubes, Mater. Charact., 61, 185, 10.1016/j.matchar.2009.11.008
Arjmandi, 2009, CVD synthesis of small-diameter single walled carbon nanotubes, Comput. Sci. Eng. Electr. Eng., 16, 61
Kim, 2002, Synthesis of ultralong and high percentage of semiconducting single-walled carbon nanotubes, Nano Lett., 2, 703, 10.1021/nl025602q
Lee, 2002, Catalyst effect on carbon nanotubes synthesized by thermal chemical vapour deposition, Chem. Phys. Lett., 360, 250, 10.1016/S0009-2614(02)00831-X
Lobiak, 2015, Ni–Mo and Co–Mo alloy nanoparticles for catalytic chemical vapour deposition synthesis of carbon nanotubes, J. Alloy. Compd., 621, 351, 10.1016/j.jallcom.2014.09.220
Lopez, 2015, Temperature effect on the synthesis of carbon nanotubes and core–shell Ni nanoparticle by thermal CVD, Diam. Relat. Mater., 52, 59, 10.1016/j.diamond.2014.12.006
Ghoranneviss, 2014, Growth of carbon nanotubes on silicon substrate and nickel catalyst by thermal CVD using ethanol, Bull. Environ. Sci. Pharmacol. Life Sci., 3, 47
Poor, 2010, Catalytic chemical vapour deposition of carbon nanotubes using Fe-doped alumina catalysts, Catal. Today, 150, 100, 10.1016/j.cattod.2009.06.019
Mendoza, 2005, Studies on carbon nanotubes synthesis via methane CVD process using Co catalyst on carbon supports, Nanotechnology, 16, S224
Li, 2008, Air-assisted growth of ultra-long carbon nanotube bundles, Nanotechnology, 19, 455609, 10.1088/0957-4484/19/45/455609
Patole, 2008, Alignment and wall control of ultra long carbon nanotubes in water assisted chemical vapour deposition, J. Appl. Phys., 41, 155311
Li, 2008, Air-assisted growth of ultra-long carbon nanotube bundles, Nanotechnology, 45, 455609, 10.1088/0957-4484/19/45/455609
Chen, 2015, The relationship between the growth rate and the lifetime in carbon nanotube synthesis, Nanoscale
Chakrabarti, 2006, Growth of super long aligned brush like carbon nanotubes, Jpn. Appl. Phys., 28, L720, 10.1143/JJAP.45.L720
Zhao, 2015, Large scale synthesis and characterization of super-bundle single walled carbon nanotubes by water assisted chemical vapour deposition, RCS Adv., 5, 30564
de Villoria, 2009, High-yield growth of vertically aligned carbon nanotubes on a continuously moving substrate, Nanotechnology, 20, 405611, 10.1088/0957-4484/20/40/405611
Lee, 2005, Vertically aligned carbon nanofibers and related structures, J. Vac. Sci. Technol. B, 23, 1450, 10.1116/1.1941187
Yoshikawa, 2008, An efficient fabrication of vertically aligned carbon nanotubes on flexible aluminum foils by catalyst-supported chemical vapor deposition, Nanotechnology, 19, 245607, 10.1088/0957-4484/19/24/245607
Asli, 2013, Effect of the ratio of catalyst to carbon source on the growth of vertically aligned carbon nanotubes on nanostructured porous silicon templates, Int. J. Ind. Chem., 4, 1, 10.1186/2228-5547-4-23
Qi, 2007, Synthesis of uniform double-walled carbon nanotubes using Iron disilicide as catalyst, Nano Lett., 7, 2417, 10.1021/nl071089a
Wei, 2003, Raman study on double-walled carbon nanotubes, J. Matter. Chem., 13, 1340, 10.1039/b300484h
Tripathi, 2014, Fine-tuning control on CNT diameter distribution, length and density using thermal CVD growth at atmospheric pressure: an in-depth analysis on the role of flow rate and flow duration of acetylene (C2H2) gas, Appl. Nanosci., 5, 19, 10.1007/s13204-013-0288-8
Shiroishi, 2003, Low temperature growth of carbon nanotube by thermal CVD with FeZrN catalyst, IEEE Conf., 65, 13
Sano, 2010, Methods for carbon nanotubes synthesis, Mater. Chem. Phys., 122, 474, 10.1016/j.matchemphys.2010.03.029
Yang, 2014, Catalytic chemical vapor deposition of methane to carbon nanotubes: copper promoted effect of Ni/MgO catalysts, J. Nanotechnol., 547030
Aksak, 2009, Carbon nanotube diameter tuning using hydrogen amount and temperature on SiO2/Si substrates, J. Optoelectron. Mater. – Symp., 1, 281
Jiang, 2008, Effects of the carbon nanotube length on its chemically modified electrode electrochemical performances, Electrochem. Commun., 10, 424, 10.1016/j.elecom.2008.01.006
Hart, 2006, Uniform and selective CVD growth of carbon nanotubes and nanofibres on arbitrarily microstructured silicon surfaces, Nanotechnology, 70, 1397, 10.1088/0957-4484/17/5/039
Pradan, 2002, Opto-electrical properties of amorphous carbon thin film deposited from natural precursor camphor, Mater. Sci. Eng. B, 96, 24
Lee, 2005, Growth mechanism of carbon nanotubes over gold-supported catalysts, Sci. Technol. Adv. Mater., 6, 402, 10.1016/j.stam.2005.03.016
Li, 2007, Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection, Communication, 129, 15770
He, 2010, Predominant (6,5) single-walled carbon nanotube growth on a copper-promoted iron catalyst, Communication, 132, 13994
Maoshuai, 2012, Growth mechanism of single-walled carbon nanotubes on iron–copper catalyst and chirality studies by electron diffraction, Chem. Mater., 24, 1796, 10.1021/cm300308k
Wang, 2013, Chiral-selective CoSO4/SiO2 catalyst for (9,8) single-walled carbon nanotube growth, ACS Nano, 67, 614, 10.1021/nn3047633
Noda, 2007, Millimeter-thick single-walled carbon nanotube forests: hidden role of catalyst support, Jpn. J. Appl. Phys., 46, 17, 10.1143/JJAP.46.L399
Hata, 2004, Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes, Science, 306, 1362, 10.1126/science.1104962
Ding, 2003, Synthesis of carbon nanostructures on nanocrystalline Ni–Ni3P catalyst supported by SiC whiskers, Carbon, 41, 579, 10.1016/S0008-6223(02)00339-1
Murakami, 2004, Raman study of SWNTs grown by CCVD method on SiC, Thin Solid Films, 464, 319, 10.1016/j.tsf.2004.06.037
Baker, 1972, Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene, J. Catal., 26, 51, 10.1016/0021-9517(72)90032-2
Baker, 1973, Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene, J. Catal., 30, 86, 10.1016/0021-9517(73)90055-9
Kitiyanan, 2000, Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co–Mo catalysts, Chem. Phys. Lett., 317, 497, 10.1016/S0009-2614(99)01379-2
Mattevi, 2008, In-situ X-ray photoelectron spectroscopy study of catalyst–support interactions and growth of carbon nanotube forests, J. Phys. Chem., 112, 12207
Cheung, 2002, Diameter-controlled synthesis of carbon nanotubes, J. Phys. Chem. B, 106, 2429, 10.1021/jp0142278
Hongo, 2002, Chemical vapor deposition of single-wall carbon nanotubes on iron-film-coated sapphire substrates, Chem. Phys. Lett., 361, 349, 10.1016/S0009-2614(02)00963-6
Colomer, 2000, Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method, Chem. Phys. Lett., 317, 83, 10.1016/S0009-2614(99)01338-X
Ago, 2004, Growth of double-wall carbon nanotubes with diameter-controlled iron oxide nanoparticles supported on MgO, Chem. Phys. Lett., 391, 308, 10.1016/j.cplett.2004.04.110
Couteau, 2003, Effects of carbon nanotubes on grain boundary, Chem. Phys. Lett., 378, 9, 10.1016/S0009-2614(03)01218-1
Willems, 2000, Control of the outer diameter of thin carbon nanotubes synthesized by catalytic decomposition of hydrocarbons, Chem. Phys. Lett., 317, 71, 10.1016/S0009-2614(99)01300-7
Sazbo, 2003, Wash and go: sodium choloride as an easily removeable catalyst support for the synthesis of carbon nanotubes, Phys. Chem. Commun., 6, 40
Chai, 2006, Preparation of carbon nanotubes over cobalt-containing catalysts via catalytic decomposition of methane, Phys. Chem. Lett., 426, 345, 10.1016/j.cplett.2006.05.026
Qingwen, 2002, Low-temperature chemical vapor deposition (CVD) growth of single-walled carbon nanotubes, J. Mater. Chem., 12, 1179, 10.1039/b109763f
Su, 2000, Lattice-oriented growth of single-walled carbon nanotubes, J. Phys. Chem. B, 104, 6505, 10.1021/jp0012404
Maret, 2007, Oriented growth of single-walled carbon nanotubes, Carbon, 45, 180, 10.1016/j.carbon.2006.07.016
He, 2011, Growth of carbon nanotubes in six orthogonal directions on spherical alumina microparticles, Carbon, 49, 2273, 10.1016/j.carbon.2011.01.060
de los Arcos, 2002, Influence of iron–silicon interaction on the growth of carbon nanotubes produced by chemical vapor deposition, Appl. Phys. Lett., 80, 2383, 10.1063/1.1465529
Talapatra, 2006, Direct growth of aligned carbon nanotubes on bulk metals, Nat. Nanotechnol., 1, 112, 10.1038/nnano.2006.56
Nessim, 2009, Low temperature synthesis of vertically aligned carbon nanotubes with electrical contact to metallic substrates enabled by thermal decomposition of the carbon feedstock, Nano Lett., 9, 3398, 10.1021/nl900675d
Chhowalla, 2001, Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition, J. Appl. Phys., 90, 5308, 10.1063/1.1410322
Ryu, 2003, Vertically aligned carbon nanofibers and related structures, Jpn. J. Appl. Phys., 42, 3578, 10.1143/JJAP.42.3578
Nehei, 2003, Evaluation of thermal resistance of carbon nanotube film fabricated using an improved slope control of temperature profile growth, Jpn. J. Appl. Phys., 42, 721
Campbell, 2002, Random networks of carbon nanotubes as an electronic material, Appl. Phys. Lett., 458, 1117
Lee, 2001, Diameter-controlled growth of carbon nanotubes using thermal chemical vapor deposition, Chem. Phys. Lett., 341, 245, 10.1016/S0009-2614(01)00481-X
Zhang, 2005, tuning of vertically-aligned carbon nanotube diameter and areal density through catalyst pre-treatment, Proc. Natl. Acad. Sci. USA, 102, 16141, 10.1073/pnas.0507064102
Hart, 2006, Rapid growth and flow-mediated nucleation of millimeter-scale aligned carbon nanotube structures from a thin-film catalyst, J. Phys. Chem. B, 110, 8250, 10.1021/jp055498b
Delzeit, 2001, Multilayered metal catalysts for controlling the density of single walled carbon nanotube growth, Chem. Phys. Lett., 348, 368, 10.1016/S0009-2614(01)01148-4
Burt, 2009, Electrochemistry at carbon nanotube forests: sidewalls and closed ends allow fast electron transfer, J. Phys. Chem. C, 113, 15133, 10.1021/jp902117g
Nessim, 2009, Low temperature synthesis of vertically aligned carbon nanotubes with electrical contact to metallic substrates enabled by thermal decomposition of the carbon feedstock, Nano Lett., 9, 3398, 10.1021/nl900675d
Christen, 2004, Rapid growth of long, vertically aligned carbon nanotubes through efficient catalyst optimization using metal film gradients, Nano Lett., 4, 1939, 10.1021/nl048856f
Eres, 2004, In situ control of the catalyst efficiency in chemical vapor deposition of vertically aligned carbon nanotubes on pre-deposited metal catalyst films, Appl. Phys. Lett., 84, 1759, 10.1063/1.1668325
Delzeit, 2001, Multiwalled carbon nanotubes by chemical vapor deposition using multilayered metal catalysts, Chem. Phys. Lett., 348, 368, 10.1016/S0009-2614(01)01148-4
Zhu, 2003, A catalytic chemical vapor deposition synthesis of double-walled carbon nanotubes over metal catalysts supported on a mesoporous material, Chem. Phys. Lett., 380, 496, 10.1016/j.cplett.2003.09.049
Ramesh, 2005, Selective chemical vapor deposition synthesis of double-wall carbon nanotubes on mesoporous silica, J. Phys. Chem. B, 109, 1141, 10.1021/jp0465736
Li, 1996, Large-scale synthesis of aligned carbon nanotubes, Science, 274, 1701, 10.1126/science.274.5293.1701
Fan, 1999, Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science, 283, 512, 10.1126/science.283.5401.512
Sohn, 2001, Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays, Appl. Phys. Lett., 78, 901, 10.1063/1.1335846
Lee, 2001, Diameter-controlled growth of carbon nanotubes using thermal chemical vapor deposition, Chem. Phys. Lett., 341, 245, 10.1016/S0009-2614(01)00481-X
Xu, 1999, Synthesis of silicon carbide nanowires in a catalyst-assisted process, Appl. Phys. Lett., 74, 2549, 10.1063/1.123894
Kichambare, 2002, Thin film metallic catalyst coatings for the growth of multiwalled carbon nanotubes by pyrolysis of xylene, Carbon, 40, 1903, 10.1016/S0008-6223(02)00033-7
Ikuno, 2003, Structural characterization of randomly and vertically oriented carbon nanotube films grown by chemical vapour deposition, Surf. Interface Anal., 35, 15, 10.1002/sia.1485
Hafner, 1998, Catalytic growth of single-wall carbon nanotubes from metal particles, Chem. Phys. Lett., 296, 195, 10.1016/S0009-2614(98)01024-0
Luo, 2002, Catalysts effect on morphology of carbon nanotubes prepared by catalytic chemical vapor deposition in a nano-agglomerate bed, Phys. B: Condens. Matter, 323, 314, 10.1016/S0921-4526(02)01039-6
Avdeeva, 1996, Iron-containing catalysts of methane decomposition: accumulation of filamentous carbon, Appl. Catal. A, 141, 117, 10.1016/0926-860X(96)00026-9
Delzeit, 2002, Growth of multiwall carbon nanotubesin an industry coupled plasma reactor, J. Appl. Phys., 91, 6027, 10.1063/1.1465101
Ng, 2003, Growth of carbon nanotubes: a combinatorial method to study the effect of catalysts and underlayers, J. Phys. Chem. B, 107, 8484, 10.1021/jp034198w
Nishiyama, 1974, Gasification of carbon deposited on supported Ni–Cu catalysts, J. Catal., 33, 98, 10.1016/0021-9517(74)90249-8