Synthesis of carbon nanotube array using corona discharge plasma-enhanced chemical vapor deposition
Tóm tắt
A corona discharge plasma-enhanced chemical vapor deposition with the features of atmospheric pressure and low temperature has been developed to synthesize the carbon nanotube array. The array was synthesized from methane and hydrogen mixture in anodic aluminum oxide template channels in that cobalt was electrodeposited at the bottom. The characterization results by the scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy indicate that the array consists of carbon nanotubes with the diameter of about 40 nm and the length of more than 4 μm, and the carbon nanotubes are mainly restrained within the channels of templates.
Tài liệu tham khảo
Fan, S., Chapline, M. G., Franklin, N. R. et al., Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science, 1999, 283: 512–514.
Choi, W. B., Chung, D. S., Kang, J. H. et al., Fully sealed, high-brightness carbon-nanotube field-emission display, Appl. Phys. Lett., 1999, 75(20): 3129–3132.
Kyotani, T., Pradhan, B. K., Tomita, A., Synthesis of carbon nanotube composites in nanochannels of an anodic aluminum oxide film, Bull. Chem. Soc. Jpn., 1999, 72: 1957–1970.
Jessensky, O., Self-organized formation of hexagonal pore arrays in anodic alumina, Appl. Phy. Lett., 1998, 72(10): 1173–1175.
Masuda, H., Satoh, M., Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask, Jpn. J. Appl. Phys. (Part 2), 1996, 35: L126-L129.
Wu, Q., Hu, Z., Wang, X. Z. et al., Porous alumina template in preparation of one-dimensional novel nanomaterials, Chinese J. Inorg. Chem. (in Chinese), 2002, 18(7): 647–652.
Che, G., Lakshmi, B. B., Martin, C. R. et al., Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method, Chem. Mater., 1998, 10: 260–267.
Suh, J. S., Lee, J. S., Highly ordered two-dimensional carbon nanotubes arrays, Appl. Phys. Lett., 1999, 75(14): 2047–2049.
Ren, Z. F., Huang, Z. P., Xu, J. W. et al., Synthesis of large arrays of well-aligned carbon nanotubes on glass, Science, 1998, 282: 1105–1107.
Wang, X., Hu, Z., Wu, Q. et al., Low-temperature catalytic growth of carbon nanotubes under microwave plasma assistance, Catal. Today, 2002, 72: 205–211.
Tsai, S. H., Chiang, F. K., Tsai, T. G. et al., Synthesis and characterization of the aligned hydrogenated amorphous carbon nanotubes by electron cyclotron resonance excitation, Thin Solid Films, 2000, 366: 11–15.
Ho, G. W., Wee, A. T. S., Lin, J. et al., Synthesis of well-aligned multiwalled carbon nanotubes on Ni catalyst using radio frequency plasma-enhanced chemical vapor deposition, Thin Solid Films, 2001, 388: 73–77.
Eliasson, B., Kogelschatz, U., Nonequilibrium volume plasma chemical processing, IEEE Trans. Plasma Sci., 1991, 19(6): 1053–1077.
Liu, C., Marafee, A., Hill, B. et al., Oxidative coupling of methane with ac and dc corona discharges, Ind. Eng. Chem. Res., 1996, 35(10): 3295–3301.
Choi, Y. C., Shin, Y. M., Lim, S. C. et al., Effect of surface morphology of Ni thin film on the growth of aligned carbon nanotubes by microwave plasma-enhanced chemical vapor deposition, J. Appl. Phys., 2000, 88(8): 4898–4903.
Lee, C. J., Kim, D. W., Lee, T. J. et al., Synthesis of aligned carbon nanotubes using thermal chemical vapor deposition, Chem. Phys. Lett., 1999, 312: 461–468.
Sui, Y. C., Acosta, D. R., González-León, J. A. et al., Structure, thermal stability, and deformation of multibranched carbon nanotubes synthesized by CVD in AAO template, J. Phys. Chem. B, 2001, 105: 1523–1527.