Tổng hợp bột phosphate canxi từ lactate canxi và photphat hydroammonium để chế tạo sinh học gốm sứ

Inorganic Materials - Tập 53 - Trang 859-868 - 2017
T. V. Safronova1, V. I. Putlyaev1, M. D. Andreev1, Ya. Yu. Filippov1, A. V. Knotko1, T. B. Shatalova1, P. V. Evdokimov1
1Moscow State University, Moscow, Russia

Tóm tắt

Một bột phosphate canxi đã được tổng hợp từ dung dịch lactate canxi 0,25, 0,5 và 1,0 M và photphat hydroammonium trong môi trường nước với tỷ lệ Ca/P = 1, mà không có điều chỉnh pH. Theo dữ liệu nhiễu xạ tia X, bột được tổng hợp gồm brushite (CaHPO4 · 2H2O) và octacalcium phosphate (Ca8(HPO4)2(PO4)4 · 5H2O). Sau khi xử lý nhiệt trong khoảng 500–700°C, các bột này có màu xám do sự phân hủy của sản phẩm phản ứng. Các bột đã xử lý nhiệt trong khoảng 500–700°C chủ yếu gồm γ-Ca2P2O7. Các gốm sứ được chế tạo từ các bột tổng hợp bằng cách nung ở 1100°C gồm β-Ca2P2O7 và β-Ca3(PO4)2.

Từ khóa

#phosphate canxi #lactate canxi #photphat hydroammonium #gốm sinh học #xử lý nhiệt

Tài liệu tham khảo

Barinov, S.M., Calcium phosphate-based ceramic and composite materials for medical applications, Usp. Khim., 2010, vol. 79, no. 1, pp. 15–32. Safronova, T.V. and Putlyaev, V.I., Powder systems for calcium phosphate ceramics, Inorg. Mater., 2017, vol. 53, no. 1, pp. 17–26. Ferraz, M.P., Monteiro, F.J., and Manuel, C.M., Hydroxyapatite nanoparticles: a review of preparation methodologies, J. Appl. Biomater. Biomech., 2004, vol. 2, pp. 74–80. Uskoković, V. and Uskoković, D.P., Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents, J. Biomed. Mater. Res., Part B: Appl. Biomater., 2011, vol. 96, no. 1, pp. 152–191. Stepuk, A.A., Veresov, A.G., Putlyaev, V.I., and Tret’yakov, Yu.D., The influence of NO3 −, CH3COO–, and Cl– ions on the morphology of calcium hydroxyapatite crystals, Dokl. Phys. Chem., 2007, vol. 412, no. 1, pp. 11–14. Safronova, T.V., Phase composition of ceramic based on calcium hydroxyapatite powders containing byproducts of the synthesis reaction, Glass. Ceram., 2009, vol. 66, nos. 3–4, pp. 136–139. Martin, R.I. and Brown, P.W., Phase equilibria among acid calcium phosphates, J. Am. Ceram. Soc., 1997, vol. 80, no. 5, pp. 1263–1266. Liu, C., Huang, Y., Shen, W., and Cui, J., Kinetics of hydroxyapatite precipitation at pH 10 to 11, Biomaterials, 2001, vol. 22, pp. 301–306. Li, H., Xue, F., Wan, X., Liu, H., Bai, J., and Chu, C., Polyethylene glycol-assisted preparation of beta-tricalcium phosphate by direct precipitation method, Powder Technology, 2016. http://dx.doi.org/10.1016/j.powtec. 2016.05.061 Wu, V.M. and Uskoković, V., Is there a relationship between solubility and resorbability of different calcium phosphate phases in vitro?, Biochim. Biophys. Acta, 2016. http://dx.doi.org/10.1016/j.bbagen.2016.05.022 Barinov, S. and Komlev, V., Calcium Phosphate Based Bioceramics for Bone Tissue Engineering, Zurich: TransTech Publications, 2008. Safronova, T.V., Knot’ko, A.V., Shatalova, T.B., Evdokimov, P.V., Putlyaev, V.I., and Kostin, M.S., Calcium phosphate ceramic based on powder synthesized from a mixed-anionic solution, Glass Ceram., 2016, vol. 73, nos. 1–2, pp. 25–31. Safronova, T.V., Putlyaev, V.I., Kurbatova, S.A., Shatalova, T.B., Larionov, D.S., Kozlov, D.A., and Evdokimov, P.V., Properties of amorphous calcium pyrophosphate powder synthesized via ion exchange for the preparation of bioceramics, Inorg. Mater., 2015, vol. 51, no. 11, pp. 1177–1184. Safronova, T.V., Putlyaev, V.I., Avramenko, O.A., Shekhirev, M.A., and Veresov, A.G., Ca-deficient hydroxyapatite powder for producing tricalcium phosphate based ceramics, Glass Ceram., 2011, vol. 68, nos. 1–2, pp. 28–32. Safronova, T.V., Putlyaev, V.I., and Shekhirev, M.A., Resorbable calcium phosphates based ceramics, Powder Metall. Met. Ceram., 2013, vol. 52, nos. 5–6, pp. 357–363. Safronova, T.V., Putlyaev, V.I., Kazakova, G.K., and Korneichuk, S.A., Biphase CaO–P2O5 ceramic based on powder synthesized from calcium acetate and ammonium hydrophosphate, Glass Ceram., 2013, vol. 70, nos. 1–2, pp. 65–70. Putlyaev, V.I., Kukueva, E.V., Safronova, T.V., Ivanov, V.K., and Churagulov, B.R., Features of octacalcium phosphate thermolysis, Refract. Ind. Ceram., 2014, vol. 54, no. 5, pp. 420–424. Safronova, T.V., Kuznetsov, A.V., Korneychuk, S.A., Putlyaev, V.I., and Shekhirev, M.A., Calcium phosphate powders synthesized from solutions with [Ca2+]/[PO4 3-] = 1 for bioresorbable ceramics, Cent. Eur. J. Chem., 2009, vol. 7, no. 2, pp. 184–191. Safronova, T.V., Mukhin, E.A., Putlyaev, V.I., Knotko, A.V., Evdokimov, P.V., Shatalova, T.B., Filippov, Ya.Yu., Sidorov, A.V., and Karpushkin, E.A., Amorphous calcium phosphate powder synthesized from calcium acetate and polyphosphoric acid for bioceramics application, Ceram. Int., 2017, vol. 43, pp. 1310–1317. http://dx.doi.org/10.1016/j.ceramint.2016.10.085 Kivrak, N. and Tas, A.C., Synthesis of calcium hydroxyapatite–tricalcium phosphate (HA–TCP) composite bioceramic powders and their sintering behavior, J. Am. Ceram. Soc., 1998, vol. 81, no. 9, pp. 2245–2252. Śalósarczyk, A., Stobierska, E., Paszkiewicz, Z., and Gawlicki, M., Calcium phosphate materials prepared from precipitates with various calcium: phosphorus molar ratios, J. Am. Ceram. Soc., 1996, vol. 79, no. 10, pp. 2539–2544. Zyman, Z., Epple, M., Goncharenko, A., Rokhmistrov, D., Prymak, O., and Loza, K., Thermally induced crystallization and phase evolution in powders derived from amorphous calcium phosphate precipitates with a Ca/P ratio of 1: 1, J. Cryst. Growth, 2016, vol. 450, pp. 190–196. Huang, C. and Cao, P., Tuning Ca: P ratio by NaOH from monocalcium phosphate monohydrate (MCPM), Mater. Chem. Phys., 2016, vol. 181, pp. 159–166. Solonenko, A.P., Golovanova, O.A., Fil’chenko, M.V., Ishutina, V.S., Leont’eva, N.N., Antonicheva, N.V., Buyal’skaya, K.S., and Savel’eva, G.G., Physicochemical Study of hydroxyapatite–brushite systems prepared by coprecipitation, Vestn. Omsk. Univ., 2012, no. 2, pp. 135–142. Cheung, H., Tanke, R.S., and Torrence, G.P., Acetic acid, in Ullmann’s Encyclopedia of Industrial Chemistry, New York: Wiley–VCH, 2002. http://dx.doi.org/ 10.1002/14356007.a01_045.pub2. Williams, R. and Lyman, C., A neutral buffered standard for hydrogen ion work and accurate titrations which can be prepared in one minute, J. Am. Chem. Soc., 1932, vol. 54, no. 5, pp. 1911–1912. Bothara, K.G., Part 10.3, buffers, in Inorganic Pharmaceutical Chemistry, Puna: Pragati, 2008. Sarafanova, L.A., Pishchevye dobavki: entsiklopediya (Food Additives: An Encyclopedia), St. Petersburg: GIORD, 2004. Seisenbaeva, G.A., Daniel, G., Nedelec, J.M., and Kessler, V.G., Solution equilibrium behind the roomtemperature synthesis of nanocrystalline titanium dioxide, Nanoscale, 2013, vol. 5, no. 8, pp. 3330–3336. Lur’e, Yu.Yu., Spravochnik po analiticheskoi khimii (Handbook of Analytical Chemistry), Moscow: Khimiya, 1971. Du, X. and Xu, Y., Preparation and electrical properties of an anodized Al2O3–BaTiO3 composite film, J. Am. Ceram. Soc., 2008, vol. 91, no. 7, pp. 2360–2363. Demeyer, D.I., Vandekerckhove, P., and Moermans, R., Compounds determining pH in dry sausage, Meat Sci., 1979, vol. 3, no. 3, pp. 161–167. Sun, C. and Zhang, X., The influences of the material properties on ceramic micro-stereolithography, Sens. Actuators, A, 2002, vol. 101, no. 3, pp. 364–370.