Synthesis of bimetallic 4-PySI-Pd@Cu(BDC) via open metal site Cu-MOF: Effect of metal and support of Pd@Cu-MOFs in H2 generation from formic acid

Molecular Catalysis - Tập 467 - Trang 30-37 - 2019
Hassan Alamgholiloo1, Shengbo Zhang2, Arefeh Ahadi1, Sadegh Rostamnia1, Reza Banaei1, Zhongcheng Li3, Xiao Liu4, Mohammadreza Shokouhimehr5
1Organic and Nano Group (ONG), Department of Chemistry, Faculty of Science, University of Maragheh, PO Box 55181-83111, Maragheh, Iran
2Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
3State Key Lab Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
4Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
5Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea

Tài liệu tham khảo

Graetz, 2009, Chem. Soc. Rev., 38, 73, 10.1039/B718842K

Sculley, 2011, Energy Environ. Sci., 4, 2721, 10.1039/c1ee01240a

Turner, 2004, Science, 305, 972, 10.1126/science.1103197

Cipriani, 2014, Int. J. Hydrogen Energy, 39, 8482, 10.1016/j.ijhydene.2014.03.174

Feng, 2015, RSC Adv., 5, 39878, 10.1039/C5RA04157K

Mori, 2013, ACS Catal., 3, 1114, 10.1021/cs400148n

Gu, 2011, J. Am. Chem. Soc., 133, 11822, 10.1021/ja200122f

Wan, 2016, ChemistrySelect, 1, 6907, 10.1002/slct.201601518

Bi, 2012, J. Am. Chem. Soc., 134, 8926, 10.1021/ja301696e

Zhu, 2014, Chem. Sci., 5, 195, 10.1039/C3SC52448E

Koh, 2017, J. Mater. Chem. A

Mori, 2017, ACS Catal., 7, 3147, 10.1021/acscatal.7b00312

Mori, 2017, Chem. Commun., 53, 4677, 10.1039/C7CC00864C

Navlani-García, 2016, Ind. Eng. Chem. Res., 55, 7612, 10.1021/acs.iecr.6b01635

Kuwahara, 2017, ChemCatChem, 9, 1906, 10.1002/cctc.201700508

Martis, 2013, J. Phys. Chem. C, 117, 22805, 10.1021/jp4069027

Wen, 2016, ACS Energy Lett., 2, 1, 10.1021/acsenergylett.6b00558

Ping, 2013, J. Mater. Chem. A, 1, 12188, 10.1039/c3ta12724a

Yurderi, 2014, Appl. Catal. B, 160, 514, 10.1016/j.apcatb.2014.06.004

Tedsree, 2011, Nat. Nanotechnol., 6, 302, 10.1038/nnano.2011.42

Wang, 2013, J. Mater. Chem. A, 1, 12721, 10.1039/c3ta12531a

Lee, 2014, J. Mater. Chem. A, 2, 9490, 10.1039/c4ta01133c

Dai, 2015, Appl. Catal. B, 165, 57, 10.1016/j.apcatb.2014.09.065

Barnard, 2013, Chem. Sci., 4, 1234, 10.1039/c2sc21923a

Navlani-García, 2015, Catal. Sci. Technol., 5, 364, 10.1039/C4CY00667D

Long, 2009, Chem. Soc. Rev., 38, 1213, 10.1039/b903811f

Zhou, 2012, Chem. Rev., 112, 673, 10.1021/cr300014x

Liu, 2014, Chem. Soc. Rev., 43, 6011, 10.1039/C4CS00094C

Puthiaraj, 2014, Asian J. Org. Chem., 3, 784, 10.1002/ajoc.201402019

Ma, 2010, Chem. Commun., 46, 44, 10.1039/B916295J

Jeazet, 2012, J. Chem. Soc. Dalton Trans., 41, 14003, 10.1039/c2dt31550e

Rostamnia, 2016, J. Colloid Interface Sci., 469, 310, 10.1016/j.jcis.2016.02.021

Rostamnia, 2016, Appl. Organomet. Chem., 11, 954, 10.1002/aoc.3528

Chen, 2010, Eur. J. Inorg. Chem., 2010, 3745, 10.1002/ejic.201000349

Carson, 2009, Eur. J. Inorg. Chem., 2009, 2338, 10.1002/ejic.200801224

Puthiaraj, 2014, Green Chem., 16, 2865, 10.1039/c4gc00056k

Zhou, 2010, ChemSusChem, 3, 1379, 10.1002/cssc.201000199

Yan, 2015, Adv. Energy Mater., 5

Wang, 2013, Angew. Chemie Int. Ed., 52, 4406, 10.1002/anie.201301009

Jeon, 2017, Appl. Catal. B: Environ., 210, 212, 10.1016/j.apcatb.2017.03.070

Ting, 2009, Chem. Commun., 7333, 10.1039/b916507j

Qin, 2013, Chem. Commun., 49, 10028, 10.1039/c3cc46248j

Singh, 2012, Int. J. Hydrogen Energy, 37, 18915, 10.1016/j.ijhydene.2012.09.104

Zhang, 2013, Angew. Chem. Int. Ed., 52, 3681, 10.1002/anie.201300276

Metin, 2013, Nanoscale, 5, 910, 10.1039/C2NR33637E

Du, 2012, J. Am. Chem. Soc., 134, 4393, 10.1021/ja211637p

Briggs, 1990, Vol. 1, 151